10 Years with Spherical Harmonics

Blažej Bucha

Department of Theoretical Geodesy and Geoinformatics
Slovak University of Technology in Bratislava
blazej.bucha@stuba.sk

Tatry 2022: Globálna geodézia a geoinformatika

What are Spherical Harmonics Anyway?

-

What are Spherical Harmonics Anyway?

(Almost) Any function on a sphere can be computed using spherical harmonics.

Figure: Earth's topography and bathymetry (m) expanded up to spherical harmonic degree 360.

What are Spherical Harmonics Anyway?

(Almost) Any function on a sphere can be computed using spherical harmonics.

Figure: Disturbing potential $\left(\mathrm{m}^{2} \mathrm{~s}^{-2}\right)$ on the GRS80 ellipsoid expanded up to degree 720.

What are Spherical Harmonics Anyway?

(Almost) Any function on a sphere can be computed using spherical harmonics.

Figure: Total deflection of the vertical (arcsec) on the GRS80 ellipsoid expanded up to degree 720 .

The Naive Way (2011)

Goal: Compute the following equation at dense grids $\left(\varphi_{i}, \lambda_{j}\right)$ with many spherical harmonics as efficiently as possible:

$$
\begin{equation*}
f\left(\varphi_{i}, \lambda_{j}\right)=\sum_{n=0}^{n_{\mathrm{max}}} \sum_{m=0}^{n}\left(\bar{C}_{n m} \cos k \lambda_{j}+\bar{S}_{n m} \sin k \lambda_{j}\right) \bar{P}_{n m}\left(\sin \varphi_{i}\right) \tag{1}
\end{equation*}
$$

For $n_{\text {max }}=1000$, there is $\sim 1,000,000$ spherical harmonics. For $n_{\max }=10,000$, there is $\sim 100,000,000$ spherical harmonics.

The Naive Approach: Simply compute all the terms in Eq. (1) for all the grid points $\left(\varphi_{i}, \lambda_{j}\right)$ and do the summation.

- Point-wise (MATLAB)

Figure: Computation time as a function of maximum harmonic degree in a log-log scale (GrafLab, Point-Wise mode)

Lumped coefficients (2012)

After re-ordering the two summations, we get

$$
\begin{align*}
f\left(\varphi_{i}, \lambda_{j}\right) & =\sum_{m=0}^{n_{\max }} \sum_{n=0}^{n_{\max }}\left(\bar{C}_{n m} \cos k \lambda_{j}+\bar{S}_{n m} \sin k \lambda_{j}\right) \bar{P}_{n m}\left(\sin \varphi_{i}\right) \\
& =\sum_{m=0}^{n_{\max }} A_{m}\left(\varphi_{i}\right) \cos k \lambda_{j}+B_{m}\left(\varphi_{i}\right) \sin k \lambda_{j} \tag{2}
\end{align*}
$$

where

$$
\begin{align*}
& A_{m}\left(\varphi_{i}\right)=\sum_{n=0}^{n_{\max }} \bar{C}_{n m} \bar{P}_{n m}\left(\sin \varphi_{i}\right) \tag{3}\\
& B_{m}\left(\varphi_{i}\right)=\sum_{n=0}^{n_{\max }} \bar{S}_{n m} \bar{P}_{n m}\left(\sin \varphi_{i}\right)
\end{align*}
$$

are lumped coefficients that are constant for a fixed φ_{i}. Eq. (2) can be computed using FFT.

—— Point-wise (MATLAB) —— Lumped coefficients (MATLAB)

Figure: Computation time as a function of maximum harmonic degree in a log-log scale (GrafLab, Grid-Wise mode)

——Point-wise (MATLAB) —— Lumped coefficients (MATLAB)

Figure: Computation time as a function of maximum harmonic degree in a log-log scale (GrafLab, Grid-Wise mode)

$$
\text { Speed up factor up to } \sim 1500 \text { ! }
$$

The Equatorial Symmetry (2018)

Equatorial symmetry of Legendre functions:

$$
\begin{equation*}
\bar{P}_{n m}(\sin (-\varphi))=(-1)^{n+m} \bar{P}_{n m}(\sin \varphi) . \tag{4}
\end{equation*}
$$

Figure: Left: $Y_{30}(\varphi, \lambda)$, right: $Y_{40}(\varphi, \lambda)$

The C Language (2019)

- Low-level compiled general-purpose programming language
- Highly portable
- Used from embedded systems to supercomputers

Figure: Computation time as a function of maximum harmonic degree in a log-log scale (C language, 1 core)

Figure: Computation time as a function of maximum harmonic degree in a log-log scale (C language, 6 cores)

CPU Caching (2020)

CPU Caching (2020)

CPU Caching (2020)

Vector CPU instructions in C (2022)

Figure: Scalar multiplication of two doubles

Vector CPU instructions in C (2022)

Figure: Multiplication of two vectors of doubles using AVX2

Figure: Computation time as a function of maximum harmonic degree in a log-log scale (C language, 6 cores, SIMD CPU instructions)

Future Work (2022 - ???)

CHarm: C library to work with spherical harmonics up to almost arbitrary degrees

- https://github.com/blazej-bucha/charm

Future work:

- Other normalization schemes
- MPI parallelization for distributed-memory systems
- Polar optimization
- Object-oriented Python wrapper with ctypes (in progress)
- Fused multiply-accumulate CPU instruction
- Build CHarm with CMake on Windows?

Thank you for your attention!

Backup slides

CPU Caching (2020)

RAM

CPU Caching (2020)

Bus

CPU Caching (2020)

Bus

CPU

CPU Caching (2020)

Row-major order

Column-major order

Figure: Memory storage schemes (source: https://www.wikipedia.org). Top: the C language, bottom: Fortran

CPU Caching (2020)

Cache-friendly code in C

```
for (size_t i = 0; i < N; i++)
{
    for (size_t j = 0; j < N; j++)
    {
        c += A[i][j];
    }
}
```

Cache-friendly code in Fortran

```
do i = 1,N
    do j = 1,N
        c = c + A(j, i)
    end do
end do
```


Vector CPU instructions in C (2022)

- Low-level programming
- Assembly language
- C intrisic functions from the immintrin.h header file
- Requires specific data alignement (malloc is not suitable)
- Often requires completely new code and algorithms
- Quadruple precision not supported on the hardware level

Table: Overview of AVX instruction sets

Instruction sets	Register size (bits)	Single precision (float)	Double precision (double)	Introduced
(year)				
AVX	128	8	4	2011
AVX2	256	8	4	2013
AVX-512	512	16	8	2016

