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Abstract

We generalize spectral gravity forward modelling to any continuous 3D mass density

distributions of topographic masses. The density function is modelled by a polyno-

mial in the radial direction, while each density polynomial coefficient is expanded into

surface spherical harmonics. The method is generalized to any integration radius, en-

abling to integrate near-zone, far-zone and global topographic masses.

Method

The gravitational potential of topographic masses is given by the Newton integral
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where we assume the density ρ to be any 3D continuous function, so that it can be

expressed as
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Global variant
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into Eq. (1) and analytically evaluating the integral over the spherical radius r′, we get
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Cap-modified variant

To spatially restrict the integration to near- or far-zone topographic masses, we em-

ploy the concept ofMolodensky’s truncation coefficients, here denoted asQ0,0,j
npi (r, ψ0),

where ψ0 is the integration radius. The near- and far-zone effects on the gravitational
potential (j = ‘In’ or ‘Out’, respectively) read

V j(r,Ω, ψ0) = GM
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where
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Formally similar relations were derived for the full gravitational vector and the full grav-

itational tensor. Interestingly, only three groups of truncation coefficients and of their

radial derivatives are needed to describe 10 gravitational field quantities and all their

radial derivatives, Q0,0,j
npi (r, ψ0, R), Q1,1,j

npi (r, ψ0, R) and Q2,2,j
npi (r, ψ0, R).

Implementation

Programming language: C,

Parallelization: OpenMP (shared memory architectures),

SIMD parallelization: AVX, AVX2 and AVX-512,

Harmonic analysis: Gauss–Legendre quadrature,

External C libraries: FFTW3 (fast Fourier transform), GNU GMP and GNU MPFR

(multiple-precision floating-point computations).

Precision (except for truncation coefficients): double (available also in single and

quadruple precision)

The GMP and MPFR libraries are used to extend the number of significant digits (often

well-beyond the quadruple precision) when computing the truncation coefficients.

The implementation will be soon available through CHarm, a C library for high-degree

spherical harmonic transforms (visit https://www.charmlib.org).

Experiment Setup

Moon’s topographic masses: MoonTopo2600p.shape [1] up to degree 360

referenced to R = 1,728,200 m (Fig. 1)
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Figure 1. Moon’s topographic masses (m) above the reference sphere of radius 1,728,200 m

Density model: maximum harmonic degree 180, imax = 1 (obtained from 3D

density model due to [2]; the original model is shown in Fig. 2)
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Figure 2. Surface density (left; kg m−3) and its first-order gradient (right; kg m−3 km)

Evaluation points: 5′ × 5′ grid on a Brillouin sphere with the radius r = 1,750,000 m
Integration radius ψ0: 10◦

Maximum topography power pmax: 20

Precision to evaluate Q0,0,j
npi (r, ψ0): 200 bits for the significand

Results

Near-zone effects: maximum degree 2160 (Fig. 3)
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Figure 3. Gravitational potential induced by near-zone masses (m2 s−2)

Far-zone effects: maximum degree 2160 (Fig. 4)
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Figure 4. Gravitational potential induced far-zone masses (m2 s−2)

Only less than 1.5 minutes were needed to compute one of the two gravitational ef-

fects (inluding 40 harmonic analyses and 40 harmonic syntheses, I/Os, etc.). The com-

putations were conducted on an ordinary PC with 6 CPU cores clocked at 3.40GHz.

Summary

Spectral gravity forward modelling of 3D density distributions developed

Implemented in CHarm

Can be used for evaluation points on irregular surface (e.g., the Earth’s surface)
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