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Motivation

Gravitational information inferred from the shape and density of topography is useful, for instance, to

determine the geoid or to approximate fine gravitational field features. When pushed to high resolutions,

gravity-forward modelling becomes challenging, especially when evaluation points are located near the

topography. This poster studies accurate and efficient topographic gravitational field modelling near the

topography while using 3D-variable density.

The gravitational potential V of the topography H is given by Newton’s integral

V (r,Ω) = G

∫∫
Ω′

R+H(Ω′)∫
r′=R

ρ(r′,Ω′)
`(r, ψ, r′)

(r′)2 dr′ dΩ′. (1)

We assume the density ρ is square integrable in latitude and longitude and analytical in the radial direction,
so that it can be expressed as

ρ(r′,Ω′) =
∞∑
i=0

ρi(Ω′) (r′)i, ρi(Ω′) =
∞∑
n=0

n∑
m=−n

ρ̄(i)
nm Ȳnm(Ω′). (2)

Eq. (1) can be evaluated in the spatial or spectral domain.

Spatial methods: accurate near the topography, but slow.

Spectral methods: efficient, but invalid near the topography if used globally.

Sought is thus a combination of spatial and spectral techniques that retains the best from both worlds, the

accuracy of spatial methods and the efficiency of spectral approaches.

We split the gravitational potential V into two constituents,

V = V Near + V Far, (3)

where V Near is the gravitational potential implied by masses up

to some spherical distance ψ0 from the evaluation point (near-

zone masses) and V Far is the contribution from the remaining

far-zone masses.

We propose to use spatial-domain methods to get V Near and
spectral-domain methods modified to a spherical cap (hence

not global) to get V Far. If the hypothesis of [1] is true, the

spectral method will converge even on the topography as long

as the integration radius is larger than the largest topographic

height max(H). This makes it possible to use the slow spatial-

domain methods only within a small cap having a radius of a

few km (in case of planetary bodies), while all the remaining far-

zone masses are integrated using efficient FFT-based spectral

methods.

This poster verifies the proposed combination of spatial- and spectral-domain methods in the framework

of realistic 3D-variable densities.

Spatial-domain gravity-forward modelling

We evaluate the near-zone gravitational contributions using tesseroids with density varying radially as

a finite-degree polynomial. Using different set of polynomial density coefficients for each tesseroid, 3D-

variable densities can be gravity-forward modelled.

Applied is the method of [2], which relies on the Gauss–Legendre quadrature in the horizontal direction

and analytical integration in the radial direction. In addition, 2D adaptive subdivision technique is applied

for tesseroids close to evaluation points to ensure accurate results. [2] provide equations up the second-

order directional derivatives of the gravitational potential.

Spectral-domain gravity-forward modelling

The far-zone gravitational potential is evaluated by the spectral method introduced by [3],

V Far(r,Ω, ψ0) = GM

R

N∑
n=0

n∑
m=−n

V̄ 0,0,Far
nm (r, ψ0, R) Ȳnm(Ω), (4)

where

V̄ u,v,Far
nm (r, ψ0, R) = (−1)v 2π R3+u

M

P∑
p=1

I∑
i=0

Qu,v,Far
npi (r, ψ0, R) Hρ(pi)

nm , u = 0, 1, 2; v = 0, . . . , u, (5)

Hρ(pi)
nm = 1

4π

∫∫
Ω′

Hρ(pi)(Ω′) Ȳnm(Ω′) dΩ′, Hρ(pi)(Ω′) =
(
H(Ω′)
R

)p

ρi(Ω′)Ri. (6)

In Eq. (5), Qu,v,Far
npi (r, ψ0, R) are Molodensky’s truncation coefficients. Equations for the first- and second-

order directional derivatives of Eq. (4) are provided by [3].

Numerical implementation of Eq. (4) is available through CHarm, a C/Python library for high-degree spher-

ical harmonic expansions (https://www.charmlib.org).

Data

Topography: Moon_LDEM128_shape_pa_11519 [4] up to degree NH = 2160 referenced

to R = 1,728,000 m
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Density: LIN_L250-650_TC40 [5] up to degrees Nρ0 = Nρ1 = 2160 (originally 1◦ × 1◦ grids, but the

transformation to Eq. (2) gives rise to additional harmonics). Original grids are shown here
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Setup

Gravitational quantities: V , V x, V y, V z, V xx, V xy, V xz, V yy, V yz, V zz

Evaluation points: 5 arcmin grid at 0.1 m height above the topography

Integration radius: ψ0 = 10◦ (threshold for convergence: ∼0.66◦)

Polynomial density order: I = 1
Spatial gravity-forward modelling: ∆ϕ = ∆λ = 30 arcsec, 2nd order Gauss–Legendre quadrature

Spectral gravity-forward modelling: P = 15, N = 10,800, 50 radial derivatives for the downward

continuation from a Brillouin sphere

Results
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Figure 1. Validation over the south pole up to latitude −60◦. Left column: Reference values; Right column: Errors of the new

method; Top row: V z; Bottom row: V yz

Summary

Gravitational field of topographies with 3D-variable density can be computed efficiently on the

topography by combining spatial- and spectral-domain methods

Challenge for future research is to prove that the integration radius for far-zone effects needs to be

larger than the largest topographical height to ensure convergence of the spectral method modified

to spherical caps (details in [1])
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