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Global spectral gravity forward modelling
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Cap-modified spectral gravity forward modelling
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Cap-modified forward
modelling:

H̄nm −→ V̄ j
nm(r , ψ0)

with j = ‘N’ (near-zone) or
‘F’ (far-zone).
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Far-zone effects
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Cap-modified forward
modelling:

H̄nm −→ V̄ F
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Potential series:
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Convergence on PP ′.

But what about P ′O?
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Far-zone effects
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Far-zone effects
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Theory
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Formulation of the problem

For a constant mass density and rS > Rint, Newton’s integral reads:

V F(r , φ, λ) = G ρ

π∫
ψ=ψ0

2π∫
α=0

rS∫
r ′=Rint

(r ′)2

ℓ(r , ψ, r ′)
dr ′ dα sinψ dψ. (1)

Taylor expansion of Newton’s kernel [Martinec(1998)]:

(r ′)2

ℓ(r , ψ, r ′)
= R2

int

∞∑
i=0

1
i !
Mi (r , ψ,Rint)

(
r ′ − Rint

Rint

)i

. (2)

Substituting Eq. (2) into (1), interchanging the order of the
summation and integrations and after some derivations, we get:

V F(r , φ, λ) =
GM

R

∞∑
n=0

n∑
m=−n

V̄ F
nm(r , ψ0)Ȳnm(φ, λ). (3)
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Formulation of the problem

The summation and integrations can be interchanged only if the
Taylor series (2) converges uniformly. [Martinec(1998)] has shown
that the radius of convergence of (2) for r = Rint is ℓ. This implies

ψ0 > 2 arcsin

(
max(Ĥint(φ

′, λ′))

2Rint

)
≈

max
(
Ĥint(φ

′, λ′)
)

Rint
. (4)

The radius of convergence for r > Rint is not know.
Hypothesis: The radius of convergence of the Taylor series (2)
for r ≥ Rint is ℓ.
This implies

ψ0 > arccos

(
r2 + R2

int − (max(Ĥint))
2

2 r Rint

)
. (5)
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If (5) is satisfied and if the hypothesis is true, then we have a proof
that external spherical harmonic expansions of far-zone gravitational
effects converge even on the topography and below it down to
the Rint-sphere.

The hypothesis has not yet been proven. The main obstacle is the
form of the kernels Mi ,

Mi (r , ψ,Rint) =
1
ℓ

i−1∑
s=1

i ! (i − 2)!
(i − s − 1)! (s − 1)!

( r
ℓ

)i+1−s

×
i+1−s∑
t=0

(−1)
1
2 (3i+1−s+t) (i + 2 − s − t)!! (i − s + t)!!

(i + 2 − s − t)! t!

×
(z
ℓ

)t
.

(6)
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Numerical experiments
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Radius of convergence of the TS: Numerical approach

Using the root test C = lim sup
i→∞

i
√

|ci |, the radius of convergence is D = 1
C .
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Radius of convergence of the Taylor series (2) for r = Rint + 15,000 m, ψ0 = 0.1◦
and Rint = 1,728,200 m. Both methods have their own vertical axis, given that the

Domb–Sykes method converges significantly faster. For each axis, shown is also the (same)
prediction of the radius of convergence ℓ (dashed lines).

The numerical experiments do not invalidate the hypothesis.
This is far from a formal proof, though.

Bucha B. and Kuhn M. Convergence/divergence of SHs July 17, 2023 12 / 20



Radius of convergence of the TS: Numerical approach

Using the root test C = lim sup
i→∞

i
√

|ci |, the radius of convergence is D = 1
C .

0 500 1000 1500
Maximum truncation order of the Taylor series i max

14

16

18

20

22

24

R
a
d

iu
s 

o
f 

co
n

v
e
rg

e
n
ce

 D
 (

km
)

15.29

15.3

15.31

15.32

15.33

15.34

15.35

R
a
d

iu
s 

o
f 

co
n

v
e
rg

e
n
ce

 D
 (

km
)Root test

Domb-Sykes

Radius of convergence of the Taylor series (2) for r = Rint + 15,000 m, ψ0 = 0.1◦
and Rint = 1,728,200 m. Both methods have their own vertical axis, given that the

Domb–Sykes method converges significantly faster. For each axis, shown is also the (same)
prediction of the radius of convergence ℓ (dashed lines).

The numerical experiments do not invalidate the hypothesis.
This is far from a formal proof, though.

Bucha B. and Kuhn M. Convergence/divergence of SHs July 17, 2023 12 / 20



Radius of convergence of the TS: Numerical approach

Using the root test C = lim sup
i→∞

i
√

|ci |, the radius of convergence is D = 1
C .

0 500 1000 1500
Maximum truncation order of the Taylor series i max

14

16

18

20

22

24

R
a
d

iu
s 

o
f 

co
n

v
e
rg

e
n
ce

 D
 (

km
)

15.29

15.3

15.31

15.32

15.33

15.34

15.35

R
a
d

iu
s 

o
f 

co
n

v
e
rg

e
n
ce

 D
 (

km
)Root test

Domb-Sykes

Radius of convergence of the Taylor series (2) for r = Rint + 15,000 m, ψ0 = 0.1◦
and Rint = 1,728,200 m. Both methods have their own vertical axis, given that the

Domb–Sykes method converges significantly faster. For each axis, shown is also the (same)
prediction of the radius of convergence ℓ (dashed lines).

The numerical experiments do not invalidate the hypothesis.
This is far from a formal proof, though.

Bucha B. and Kuhn M. Convergence/divergence of SHs July 17, 2023 12 / 20



Design of the experiment

Gravitating body: Moon’s topographic masses up to degree 2160.

−60°
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30°

60°

0 5000 10000 15000 20000

Moon’s topographic heights (m) referenced to the sphere of radius Rint = 1,728,200 m.
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Design of the experiment

Reference gravity disturbances: Spatial-domain forward modelling for
several ψ0, the threshold being ≈ 0.663◦ (≈ 20.114 km).

ℓ0 (km) 2.5 5.0 7.5 10.0 12.5 15.0 20.0 30.0 50.0 100.0
ψ0 = ℓ0/R (deg) 0.08 0.16 0.25 0.33 0.41 0.49 0.659 0.82 1.65 3.30
Series behaviour D D D D D D D C C C
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Reference far-zone gravity disturbances (mGal) from a divergence-free
spatial-domain Newtonian integration residing on the surface of the field-generating masses.

Left: ℓ0 = 10 km, right ℓ0 = 50 km.
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Results

Maximum harmonic degree of the potential series: 10,800
Number of topography powers: 65
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Differences between spectral- and spatial-domain far-zone gravity disturbances (mGal) on the
surface of the field-generating masses. Left: ℓ0 = 10 km, right ℓ0 = 50 km. The discrepancies

on the left reach thousands of mGal.
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Results
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Differences between spectral- and spatial-domain far-zone gravity disturbances on the surface of
the field-generating masses for various integration radii ℓ0 as a function of the maximum
topography power pmax. For pmax = 1, the maximum harmonic degree is 2160 and 10,800

otherwise.
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Conclusions
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Conclusions

Insights into convergence/divergence of spherical harmonics
We formulated a hypothesis that separates between convergent and
divergent far-zone spherical harmonic series
Numerical experiments do not invalidate the hypothesis
Rigorous proof still missing
Applications in full-scale high-resolution gravity forward modelling:

Near-zone effects with spatial methods
Far-zone effects with spectral methods
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Thank you
for your attention!
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Fast high-degree SHA/SHS library in C/Python: www.charmlib.org
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