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Technology in Bratislava, Radlinského 11, 813 68 Bratislava 15, Slovakia

Abstract

Fast spherical harmonic synthesis (SHS) at multiple points based on the lumped1

coefficients approach is very well-established technique. However, this method2

cannot be applied to SHS at irregular surfaces, as the points must be regularly3

spaced and refer to a regular surface such as the sphere or the ellipsoid of rev-4

olution. In this paper we present a MATLAB R©-based graphical user interface5

software for ultra-high degree SHS on grids at irregular surfaces, like the Earth6

surface. This software employs the highly efficient lumped coefficient approach7

for SHS at regular surfaces and the Taylor series expansions to continue the func-8

tionals to the irregular surfaces, e.g. the Earth surface. The generalized idea of9

continuing functionals using the Taylor series was presented by Hirt (Journal of10

Geodesy 86:729–744, 2012). We took the advantage of the software GrafLab11
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(Bucha and Janák in Computers & Geosciences 56:186–196, 2013), which em-12

ploys the lumped coefficients approach, and developed a new software isGrafLab13

(Irregular Surface GRAvity Field LABoratory). Compared to the commonly used14

“two loops” approach, the factor of increased computational speed can reach a15

value of several hundreds. isGrafLab allows accurate evaluation of 38 functionals16

of the geopotential on grids at irregular surfaces. High orders of the Taylor series17

can be used for the continuation. The new software offers all the other options18

available in GrafLab, such as the employment of three different approaches to19

compute the fully normalized associated Legendre functions, the graphical user20

interface or the possibility to depict data on a map.21

Keywords: Geopotential model, Gravity field functional, Spherical harmonic22

synthesis, Lumped coefficients, Irregular surface, Taylor series23

1. Introduction24

In geosciences, the spherical harmonics (e.g. Freeden and Schreiner, 2009;25

Hobson, 1931; Hoffmann-Wellenhof and Moritz, 2005), which form orthonormal26

basis functions with a global support on the sphere, are frequently used to repre-27

sent scalar fields such as the Earth gravitational (e.g. Pavlis et al., 2012) or mag-28

netic (e.g. Finlay et al., 2010) field. By means of the spherical harmonics, these29

fields can be transformed from spatial domain into frequency domain (spherical30

harmonic analysis (SHA), e.g. Colombo (1981); Sneeuw (1994)), in which they31

are characterized by a set of spherical harmonic coefficients. These coefficients32

can be transformed back into the spatial domain (spherical harmonic synthesis33

(SHS), e.g. Barthelmes (2013); Fantino and Casotto (2009)), and in the case of34

the gravitational field one gets the gravitational potential (in short geopotential).35
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After applying some operator to the spherical harmonics (e.g. the pseudodiffer-36

ential operators (cf. Freeden and Schreiner, 2009)), commonly used functionals37

of the geopotential can easily be obtained (e.g. gravitational tensor). When in-38

troducing the normal gravity field (cf. Hoffmann-Wellenhof and Moritz, 2005),39

functionals of the distrubing potential are easy to calculate as well (e.g. gravity40

anomaly, deflections of the vertical, geoid undulation, etc.).41

Nowadays, the gravity field of the Earth is very well-known up to a certain42

level of frequencies, i.e. up to some degrees of spherical harmonics to which a43

certain spatial resolution corresponds. Global geopotential models of the Earth44

(GGMs) consist of spherical harmonic coefficients representing the Earth’s grav-45

itational field and of a few additional constants. Nowadays, GGMs are almost46

routinely used in geodesy and other geosciences (climatology, geology, geomor-47

phology, geophysics, oceanography, etc.). As high-resolution GGMs we would48

like to mention EGM2008 (Pavlis et al., 2012) up to degree 2190, EIGEN-6C49

(Förste et al., 2011) up to 1420 and EIGEN-6C2 (Förste et al., 2012) up to 1949.50

Certainly the most difficult part of the SHS is the numerical evaluation of high51

degree and order spherical harmonics, viz. the fully normalized associated Legen-52

dre functions of the first kind (fnALFs) (see e.g. Hoffmann-Wellenhof and Moritz,53

2005). Since fnALFs cover a huge range of magnitude, underflow and overflow54

problems occur in their evaluation (Holmes and Featherstone, 2002). A lot of at-55

tention has been put on accurate and fast computation of these functions in the56

last decades. These efforts resulted in the development of several approaches to57

compute fnALFs, differing mainly in numerical stability and efficiency (Balmino58

et al., 2012; Fukushima, 2012a,b; Gruber et al., 2011; Holmes and Featherstone,59

2002; Cheong et al., 2012; Jekeli et al., 2007; Nesvadba, 2009; Smith et al., 1981;60
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Šprlák, 2011; Wenzel, 1998).61

In order to resolve the other problem of SHS, i.e. the numerical efficiency of62

computation, one frequently uses the well-known lumped coefficients approach63

(LCA), see Section 2.1 and the references therein. This method allows perform-64

ing very fast SHS on the grids that are regularly spaced and refer to a regular65

surface (the sphere or the ellipsoid of revolution). However, this approach cannot66

be applied if one of these conditions is not fulfilled. Hirt (2012) recently presented67

an effective method, in which one of these conditions, namely the regularity of the68

surface, can be omitted. He generalized the approach published already by Rapp69

(1997), who utilized the first-order Taylor series to continue the height anomaly70

from the ellipsoid to the Earth surface. In other words, certain functional and its71

derivatives of chosen order can be computed on the sphere or the ellipsoid em-72

ploying the LCA, and subsequently continued to an irregular surface, e.g. the73

Earth surface. This approach is very simple in principle, but it can also be highly74

efficient and accurate, as it will be pointed out. Basically an identical approach75

was employed in Balmino et al. (2012), Section 4.3 and Appendix B.76

Various computer programs for computing functionals of the geopotential are77

available, e.g. Adams and Swarztrauber (1997); Barthelmes (2003); Holmes and78

Pavlis (2008); Janák and Šprlák (2006); Sanso and Sona (2001); Smith (1998);79

Tscherning et al. (1983); Wieczorek (2012); Wittwer et al. (2008) or recently pub-80

lished Bucha and Janák (2013). A software to compute elements of the disturbing81

tensor on grids at irregular surfaces was presented by Eshagh and Abdollahzadeh82

(2012). However, to the knowledge of the authors, there is no compact and pub-83

licly available software with implemented accelerated routines that would allow84

fast and accurate SHS on grids at irregular surfaces such as the Earth surface.85
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This obstacle one usually circumvents by the point-wise approach with two loops,86

which can be, however, slower by a factor of several hundreds. This led us to87

modify the software GrafLab 1.1.2 (Bucha and Janák, 2013) to provide fast and88

accurate ultra-high degree SHS of functionals at irregular surfaces. The new soft-89

ware is called isGrafLab (Irregular Surface GRAvity Field LABoratory). It is90

written in MATLAB R© and equipped with an easy-to-use graphical user interface,91

therefore no modifications on the source code level are necessary, as it is in the92

vast majority of the software of this kind.93

The paper is organized as follows. Section 2 provides a brief recapitulation of94

the lumped coefficient approach and description of the Taylor expansions in the95

context of SHS at irregular surfaces. Section 3 describes the basic principles of96

manipulation with the software, and assessment of the accuracy and efficiency of97

the developed program. Summary and conclusions are presented in Section 4.98

2. Spherical harmonic synthesis at irregular surfaces99

2.1. Lumped coefficients approach100

Disturbing potential (see e.g. Hoffmann-Wellenhof and Moritz, 2005) expanded101

into the truncated series of the spherical harmonics and written in the form that102

employs the lumped coefficients (e.g. Colombo, 1981; Fantino and Casotto, 2009)103

reads104

T (r, θ, λ) =
GM

r

M∑
m=0

(Am(θ) cos mλ + Bm(θ) sin mλ) , (1)

where105

Am(θ) =

M∑
n=m

(R
r

)n

C̄nm P̄nm(cos θ) , (2a)

106

Bm(θ) =

M∑
n=m

(R
r

)n

S̄ nm P̄nm(cos θ) , (2b)
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and r, θ, λ denotes the spherical radius, the spherical co-latitude and the longi-107

tude, respectively, GM is the geocentric gravitational constant, R is the radius of108

the reference sphere, {C̄nm, S̄ nm} is the set of fully normalized spherical harmonic109

coefficients of degree n and order m (we assume that the spherical harmonic co-110

efficients of the normal field have been substracted, see e.g. Barthelmes (2013),111

Eqs. (109) and (111)), P̄nm(cos θ) are the fully normalized associated Legendre112

functions of the first kind (fnALFs) of degree n and order m, M denotes the max-113

imum degree of spherical harmonic expansion and, finally, Am(θ) and Bm(θ) stand114

for the lumped coefficients of the order m.115

The efficiency of the LCA is in the fact that these coefficients (see Eqs. (2a)116

and (2b)) are constant along parallels in the grid, i.e. independent of the longitude.117

Therefore if one uses the standard co-latitude–longitude grid at the sphere or the118

ellipsoid of revolution, they need to be computed only once. Another trick is that119

both summations, i.e. over m and subsequently over n, can be summed by matrix120

multiplications, which significantly reduces the computation time. For the full121

vector-matrix notation of Eq. (1) see e.g. Bucha and Janák (2013).122

An arbitrary functional of the geopotential can be written in the form of the123

lumped coefficients, and thus significantly speeds up (in some cases by a factor of124

several hundreds) SHS at regular surfaces.125

2.2. Gradient approach in spherical coordinates126

From Section 2.1 it is clear that the LCA cannot be applied to SHS on grids at127

the Earth surface, as the topography is varying differently in each meridian, and128

thus the coefficients Am(θ) and Bm(θ) are not constant. An accurate, effective and129

very simple approach how to circumvent this issue has been proposed and verified130

by Hirt (2012), see also Balmino et al. (2012). They used Taylor expansions131
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(gradient approach) to continue functionals from regular surface, at which the132

LCA is employed, to irregular surface.133

Let P(r, θ, λ) ∈ Σ be points of the standard co-latitude–longitude grid ly-134

ing at the Earth surface Σ (or at an arbitrary irregular surface in general), and135

P0(r0, θ, λ) ∈ S be points of the same grid referring to the sphere S with the136

radius r0. To continue disturbing potential from the points P0(r0, θ, λ) ∈ S to137

P(r, θ, λ) ∈ Σ, the truncated Taylor series can be written in the form138

T (r, θ, λ) = T0(r0, θ, λ) +

K∑
k=1

1
k!
∂kT
∂rk

∣∣∣∣∣∣
P0(r0,θ,λ)∈S

(r − r0)k , (3)

where K is the maximum order of the Taylor series. The kth radial derivative of139

the disturbing potential can be obtained by the simple formula140

∂kT (r, θ, λ)
∂rk = (−1)k GM

rk+1

M∑
m=0

(
A(k)

m cos mλ + B(k)
m sin kλ

)
, (4)

in which141

A(k)
m =

M∑
n=m

(R
r

)n
 k∏

i=1

(n + i)

 C̄nm P̄nm(cos θ) , (5a)

142

B(k)
m =

M∑
n=m

(R
r

)n
 k∏

i=1

(n + i)

 S̄ nm P̄nm(cos θ) . (5b)

These equations employ the highly efficient LCA. After easy calculations,143

commonly used functionals of the geopotential can be continued to irregular sur-144

faces using this scheme. Similar formulae for the gravity disturbance, the height145

anomaly and the deflections of the vertical can be found in Hirt (2012).146

It is obvious that increasing the maximum order of the Taylor series will lead147

to better approximation of the functional. Until now, no approximation has been148

done, except for the truncation of the Taylor series at some finite order value K.149

However, as it will be pointed out in Section 3.2, in the “gradient approach in150
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spherical coordinates” sufficiently high order K ensures negligible approximation151

errors.152

2.3. Gradient approach in ellipsoidal coordinates153

An approximation is necessary, if one uses the ellipsoidal coordinates (ϕ, λ, h),154

i.e. the ellipsoidal latitude, the longitude and the ellipsoidal height, respectively,155

as input data instead of the spherical coordinates (r, θ, λ). The ellipsoidal coordi-156

nates of points P(ϕ, λ, h) ∈ Σ at the standard latitude–longitude grid can be easily157

transformed into the spherical coordinates P(rE, θE, λ) ∈ Σ by the well-known for-158

mulae (e.g. Hoffmann-Wellenhof and Moritz, 2005). However, due to the various159

values of h used in the original grid, the transformed co-latitudes θE vary along160

ellipsoidal parallels. Thus, the LCA cannot be applied. To ensure that θE will be161

constant along the parallels, some ellipsoid E at the ellipsoidal height h0 above162

the reference ellipsoid can be used (h0 can be e.g. average value computed from163

the minimum and the maximum ellipsoidal heights of the grid points), so that af-164

ter the transformation one gets P0(rE
0 , θ

E
0 , λ) ∈ E. The spherical co-latitudes θE

0165

are now constant along each parallel and the LCA can be employed. Functionals166

are therefore continued from the ellipsoidal surface E 3 P0(rE
0 , θ

E
0 , λ) to the Earth167

surface Σ 3 P(rE, θE, λ).168

The truncated Taylor expansion of disturbing potential reads169

T (rE, θE, λ) ≈T0(rE
0 , θ

E
0 , λ) +

K∑
k=1

1
k!
∂kT
∂rk

∣∣∣∣∣∣
P0(rE

0 ,θ
E
0 ,λ)∈E

(h − h0)k . (6)

The approximate sign in Eq. (6) is used because of the gradients computed in170

the radial direction, which differ from the gradients in the direction of h − h0.171

This is, however, acceptable, as it was shown in Hirt (2012) and will be shown172

in Section 3.2 as well. Unlike the “gradient approach in spherical coordinates”,173
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this also causes that beyond certain value of K, incessantly increasing the order174

of the Taylor series will not have the effect of permanently “better” and “better”175

approximation of the true value. In other words, the Taylor series converges, but176

to a value of the functional at slightly different point, and not to the true value.177

2.4. Remark on the gradient approach of some functionals178

Let us mention a short remark on the gradient approach of some function-179

als, e.g. the height anomaly, the components of deflection of the vertical, etc.180

These quantities are composite functions, because of the normal gravity γ (e.g.181

Hoffmann-Wellenhof and Moritz, 2005), which is also dependent on r. Thus, the182

truncated Taylor series for, let’s say, the height anomaly reads (“approach in the183

spherical coordinates”)184

ζ(r, θ, λ) = ζ0(r0, θ, λ) +

K∑
k=1

1
k!
∂k T/γ
∂rk

∣∣∣∣∣∣
P0(r0,θ,λ)∈S

(r − r0)k . (7)

When k > 2, the partial derivatives of the term T/γ significantly complicate185

numerical computation of Eq. (7), as both the disturbing potential T and the nor-186

mal gravity γ are dependent on r. A very simple way how to avoid this problem,187

which was used in isGrafLab, is that the functional and its derivatives can be188

computed on the grid without the term γ(r0, θ), and subsequently continued to the189

Earth surface. After this, the intermediate result is divided by γ(r, θ) and the fi-190

nal result is obtained. This method is faster than evaluating the high-order partial191

derivatives of the term T/γ. The same holds for the functionals, in which the terms192

like 1/ sin θ occur or contain the centrifugal potential or acceleration (although the193

reasons are slightly different here). On the other hand, the price to be paid is the194

cost of additional memory, since full matrix of γ(r, θ) (or 1/ sin θE in the “gradient195
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approach in ellipsoidal coordinates”) has to be stored. The same approach was196

used for the height anomaly in Balmino et al. (2012), Appendix B.197

3. Software presentations198

3.1. Description of the software199

The aim of this section is to present the new developed software isGrafLab200

(Irregular Surface GRAvity Field LABoratory), which is modified version of Graf-201

Lab 1.1.2 (Bucha and Janák, 2013), and to assess the effectiveness of the gradient202

approach in spherical and ellipsoidal coordinates. isGrafLab, as well as GrafLab,203

is written in MATLAB R© and equipped with a graphical user interface (GUI), see204

Fig. 1.205

Fig. 1 should be positioned here206

The GUI is visually divided into three panels, from which the first and the third207

panel were changed only slightly. In order to stay brief, for the details about the208

manipulation with these two panels we would like to advise the reader to Bucha209

and Janák (2013), Section 3.1.210

(i) Geopotential model and reference system selection: The only change in211

this panel is that isGrafLab is not capable to read a variance-covariance matrix of212

spherical harmonic coefficients as the input file. This option was left out, since213

the main problem in the computation of commission error is not in the slowness214

of the computation as much as in the high requirements on the RAM of computer.215

Thus, the point-wise approach in GrafLab is certainly sufficient.216

(ii) Irregular surface selection: At first, the Type of the input coordinates (el-217

lipsoidal/spherical) must be specified. The grid must be defined by using the seven218
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self-explanatory arrays in the bottom left of this panel (Lat. denotes the latitude219

and Lon. is the longitude). The array Height above the reference surface (m) de-220

notes the constant height of the grid above the reference ellipsoid (GRS80 (Moritz,221

2000) or WGS84 (NIMA, 2000)) in the case of the ellipsoidal type of the coordi-222

nates or above the reference sphere with the radius R, defined by the GGM, in the223

case of the spherical coordinates. To this surface refer the points P0(rE
0 , θ

E
0 , λ) ∈ E224

or P0(r0, θ, λ) ∈ S (see Secs. 2.3 and 2.2, respectively) that will be continued to the225

irregular surface. By a rule of thumb, to this array one can enter the average value226

computed from the minimum and the maximum height of the irregular surface227

above the reference surface (the ellipsoid GRS80/WGS84 or the sphere with the228

radius R). The entries must be either floating point numbers with decimal points229

or integer values. Latitudes must be entered within the 〈−90◦, 90◦〉 interval and230

longitudes within the 〈0◦, 360◦〉 or 〈−180◦, 180◦〉 interval.231

An integer value of the maximum order of the Taylor series (K ≥ 0) (see232

Eq. (3)) must be entered into the array Order of Taylor series:. If K = 0, the233

functionals are not continued from the regular surface.234

Heights of the grid points at the irregular surface must be loaded using the235

Browse... button. In case of the ellipsoidal input coordinates this file must contain236

the ellipsoidal heights. If the spherical coordinates have been chosen, the spherical237

radii of the grid points must be given. In both cases, the input file may have two238

forms:239

a) a matrix240 
(θn, λ1) · · · (θn, λm)

...
. . .

...

(θ1, λ1) · · · (θ1, λm)

 ,
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b) a column vector (note the transposition)241 [
(θ1, λ1) . . . (θn, λ1) . . . (θ1, λm) . . . (θn, λm)

]>
,

where (θ1, λ1) are the coordinates of the southernmost and the westernmost grid242

point (arrays Lat. min (◦) and Lon. min (◦)). The northernmost and the easternmost243

grid point is denoted by (θn, λm) (arrays Lat. max (◦) and Lon. max (◦)). The input244

file may either be an ASCII file or a binary MAT-file. Points with undefined245

ellipsoidal heights/spherical radii should be indicated by the value −9999 or NaN.246

The output values are assigned correspondingly.247

(iii) Calculated parameters and output selection: From this panel only the248

check-box Commission error was removed. The rest of the panel was left un-249

changed. For the convenience of the reader, let us herein list again the summary250

of the functionals that can be computed in isGrafLab, see Table 1. We also note251

that the formulae to compute each functional can be found in the pdf file Defini-252

tion of functionals of the geopotential used in GrafLab software.pdf available at 1.253

Table 1 should be positioned here254

Here, a short note is necessary. The approaches for computing the functionals255

Geoid undulation and Height anomaly are the same in isGrafLab as in GrafLab.256

The reason is that these functionals are referred to particular surfaces, and can257

not be, by definition, shifted arbitrarily in radial or vertical direction. Moreover,258

these functionals are computed iteratively as the particular surfaces are not known259

prior to computation. However, for the convenience of the users we left these260

1http://www.svf.stuba.sk/en/departments/department-of-theoretical-geodesy/

science-and-research/downloads.html?page_id=4996
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functionals also in isGrafLab.261

isGrafLab enables to depict computed data on a map using the Mapping toolboxTM
262

of MATLAB R©. For visualizing data using only the basic module of MATLAB R©,263

see e.g. Bezděk and Sebera (2013).264

When all the required input parameters and input files have been entered, after265

clicking the OK button, the computation will start. On the left from this button,266

there is a status line, which provides short explanations during the whole com-267

putational process (Loading GGM file. . . , current value of the variable m in the268

order-dependent loop, Displaying data. . . , etc.), so that a user can clearly see in269

which part of the computation the isGrafLab is. After successful computation, the270

status Computation has been finished will appear. If any of the input parameters271

or input files have been entered in a wrong format, isGrafLab will open a warning272

dialog or error dialog with description of the error.273

The whole source code of the program called isGrafLab.m is written as a one274

m-file. A simple flowchart of the program is provided in Fig. 2.275

Fig. 2 should be positioned here276

3.2. Testing of the gradient approach277

The assessment of numerical results obtained from isGrafLab is straightfor-278

ward. In a test area we computed chosen functionals in isGrafLab with increasing279

the maximum order of the Taylor series, and compared them to the functionals280

obtained from GrafLab 1.1.2 using the point-wise approach. These values were281

assumed to be the reference values at the same points. Differences between the282

reference values and those obtained from the gradient approach indicate the level283

of approximation of this method.284
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Fig. 3 should be positioned here285

Let us start with the “gradient approach in ellipsoidal coordinates” at first. For286

better comparison we will closely follow the test designed by Hirt (2012) with287

only small modifications. As the test area we used the roughest region on the288

globe, viz. the part of the Himalayas (ϕ ∈ (26◦, 29◦), λ ∈ (86◦, 88◦), 1′ spatial res-289

olution) that includes the Mount Everest, see Fig. 3. The topography within this290

area shows the largest variations on the Earth surface from ∼0 km to ∼8.8 km. In291

order to obtain the grid of 180 × 120 points P(ϕ, λ, h) ∈ Σ with ellipsoidal heights292

of the topography within this area, we used SRTM (Shuttle Radar Topography293

Mission) digital elevation model Version 4.1 (Jarvis et al., 2008) and the quasi-294

geoid from EGM2008 (evaluated up to degree 2190 in GrafLab 1.1.2). Note that295

the SRTM elevations are referred to EGM96 (Lemoine et al., 1998). However, to296

achieve preferably similar results as in the test by Hirt, we used EGM2008 (see297

Hirt, 2012, Section 2.4.1). The impact of the choice of the reference surface E298

to the continued functionals is also described in Hirt (2012). Based on his in-299

vestigations, herein we used as the regular surface E only the “best” option, i.e.300

the ellipsoid at the height h0 = (min(h) + max(h))/2 ≈ 4 km above the reference301

ellipsoid. At this grid represented by 21 600 points we computed δgsa and Trr for302

K = 0, . . . , 7 using EGM2008 to degree 2190, and continued them to the Earth303

surface Σ. Compared to Hirt (2012), in our test we extended the order of the Tay-304

lor series from K = 3 to K = 7 (note that in isGrafLab the value of K can be even305

larger). The statistical characteristics of this test are shown in Table 2. Fig. 4 gives306

a graphical representation of the differences for δgsa. The computations were ex-307

ecuted on a PC with Intel R© CoreTM i5-3330 CPU and 4 GB RAM under the 64 bit308

Windows R© 7 OS.309
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Fig. 4 should be positioned here310

Table 2 should be positioned here311

Table 2 shows very similar characteristics for δgsa and K ≤ 3 to those by Hirt312

(2012), Table 4. It is also obvious that by further increasing the maximum order of313

the Taylor series beyond K = 3, the better approximation of the reference values314

can be achieved. However, as it was already pointed out in Section 2.3, this con-315

vergence has to “stop” at some value of K. This is caused by the approximation316

of the gradients in the direction of h − h0 by the gradients in the radial direction,317

see Section 2.3. For M = 2190 and the chosen region, the convergence “stops” at318

K ≈ 5. However, positive effect of the increased K beyond 3 is evident. For δgsa319

the RMS fell from 0.23 mGal (K = 3) to 0.03 mGal (K = 5), and from 0.73 E320

(K = 3) to 0.08 E (K = 5) for Trr, which can be considered as significant im-321

provement. These errors are far bellow the commission errors of EGM2008 (Hirt,322

2012; Pavlis et al., 2012), therefore this approach can be considered as accurate323

even in extreme conditions. It should be emphasized that for smaller values of M324

and/or in smoother areas the results are even more optimistic.325

Now let us focus on the “gradient approach in spherical coordinates”, in which326

the convergence never “stops” essentially, since no approximation is used. The327

ellipsoidal coordinates of the same points P(ϕ, λ, h) ∈ Σ within the same area as328

in the test above were transformed into the spherical coordinates P(rE, θE, λ) ∈329

Σ. To ensure that the transformed θE will be constant along the parallels and330

subsequently the LCA will be usable, we let θE = 90◦ − ϕ and obtain the regular331

grid points P(rE, θE, λ) ∈ Σ = P(rE, 90◦ − ϕ, λ) ∈ Σ. This approximation is332

admissible, since we are testing only the method herein. Next, we again computed333

at the points P(rE
0 , θ

E, λ) ∈ S the functionals δgsa, Trr and their derivatives using334
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EGM2008 to degree 2190, and continued them from the regular surface S to the335

surface Σ. The radius rE
0 of the sphere S (see Eq. (3)) was obtained by rE

0 =336

(min(rE) + max(rE))/2 ≈ R = 6 378 136.3 m. The order of the Taylor series was337

set to K = 0, . . . , 20. The results of this test are reported in Table 3.338

Table 3 should be positioned here339

It is clear that the Taylor series converges now to the reference values, although340

the convergence “slows down” at K ≈ 15. In the case that K = 15 the RMS is341

1.5 × 10−11 mGal for δgsa and 4.7 × 10−11 E for Trr. For smaller values of M the342

Taylor series converges even faster. Based on these investigations it can be said343

that for sufficiently high order of the Taylor series the approximation errors of the344

“gradient approach in spherical coordinates” are negligible.345

3.3. Testing of the time efficiency346

In this section we assess the time efficiency of the presented software is-347

GrafLab. We compared computation time of the disturbing tensor in the local348

north-oriented reference frame (LNOF) using isGrafLab and the software pre-349

sented by Eshagh and Abdollahzadeh (2012). This software is also written in350

MATLAB R© and computes elements of the disturbing tensor at irregular surfaces.351

In addition, these elements can be evaluated in three different reference frames.352

The test was executed on an ordinary PC with Intel R© CoreTM i5-3330 CPU353

and 4 GB RAM under the 64 bit Windows R© 7 OS. We used EGM2008 to de-354

gree 2190 and a global grid at 5′ × 5′ spatial resolution which corresponds to355

9 337 681 points. In isGrafLab we used two sufficiently high orders of the Taylor356

series (see Table 2), K = 3 and K = 5. We also applied two of the three available357

approaches to compute fnALFs in the software (for more details, see Bucha and358
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Janák, 2013, Section 2.1), namely the standard forward column method (Holmes359

and Featherstone, 2002) and the extended-range arithmetic (Fukushima, 2012a).360

The results of the test are summarized in Table 4.361

Table 4 should be positioned here362

Table 4 reveals that isGrafLab is capable to synthesize the disturbing ten-363

sor about 20–10 times faster than the software presented by Eshagh and Abdol-364

lahzadeh (2012). On the other hand, their approach computes the disturbing tensor365

without any approximations, unlike the “gradient approach in ellipsoidal coordi-366

nates”.367

4. Summary368

The novel developed software isGrafLab (Irregular Surface GRAvity Field369

LABoratory) has been presented in this paper. isGrafLab is capable to perform370

fast ultra-high degree SHS at regular spaced grids referring to irregular surfaces,371

e.g. the Earth surface. The approach implemented in the software was published372

by Hirt (2012) and also by Balmino et al. (2012). At first, functionals and their373

derivatives are computed at a regular surface (the sphere or the ellipsoid of revolu-374

tion) by means of the efficient LCA. Subsequently, the functionals are continued375

to the irregular surface by applying the Taylor expansion. The order of the Tay-376

lor series can be entered by the user. Compared to the “point-wise approach”377

with two loops that is usually used in this situation, isGrafLab allows accurate378

and time-saving SHS at dense grids at the Earth surface. The factor of increased379

computational speed can reach a value of several hundreds. Note that depending380

on the order of the Taylor series and the number of grid points, in general this381
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approach involves higher requirements on the RAM of computer compared to the382

LCA alone. isGrafLab is written in MATLAB R© and equipped with an easy-to-use383

GUI. isGrafLab allows SHS of 38 functionals of the geopotenial employing three384

different approaches to compute fnALFs with various numerical stability and ef-385

ficiency (see Bucha and Janák, 2013, Section 2.1).386

The numerical investigations have been divided into two separate parts, namely387

the gradient approach in ellipsoidal and spherical coordinates. It was shown that388

in the former approach the RMS of the approximation errors can be decreased389

(compared to Hirt (2012)) by further increasing the maximum order of the Taylor390

series K. For K = 5, the maximum degree M = 2190 and the roughest topography391

on the Earth, viz. the Himalayas, the RMS of the approximation errors reached392

0.03 mGal for δgsa and 0.08 E for Trr. As for the later approach, it was demon-393

strated that sufficiently large order of the Taylor series ensures agreement with the394

reference values with negligible approximation errors.395
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Table 1: Functionals of the geopotential available in isGrafLab. Explanation of the symbols in the

table: V – gravitational potential, W – gravity potential, g – gravity, T – disturbing potential, δg –

gravity disturbance, ∆g – gravity anomaly, ξ – north-south component of deflection of the vertical,

η – east-west component of deflection of the vertical, Θ – total deflection of the vertical, N –

geoid undulation, ζEll – generalized height anomaly, ζ – height anomaly; the subscript sa denotes

the spherical approximation of the functional; (r, θ, λ) stands for the spherical coordinates; (x, y, z)

denotes the coordinates in the local north-oriented reference frame; the subscripts r, θ, λ, x, y, z

and their combinations stand for the derivatives of the functionals with respect to the particular

coordinate; the number in the superscript denotes computational demand (computation time of the

functional and memory usage during the computation) – (1) small, (2) medium, (3) high, (4) very

high; (∗) and (∗∗) denote the functionals for which the value of nmin cannot be larger than 2 and 0,

respectively.
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Table 2: Statistical characteristics of differences between the reference values and those obtained

using the “gradient approach in ellipsoidal coordinates”; used EGM2008 to degree 2190; gravity

disturbances are in mGal (1 mGal = 10−5 m s−2), second radial derivatives of disturbing potential

in 1 E = 10−9 s−2 and CPU time in s.
δgsa Trr

Min Max Mean RMS CPU time Min Max Mean RMS CPU time

Reference − (0th order) −101.661 46.375 −6.712 14.6743 11 −183.224 103.589 −5.797 27.0377 11

Reference − (0th + 1st order) −23.622 38.123 −0.285 3.3007 13 −61.617 95.468 −0.431 8.9100 14

Reference − (0th to 2nd order) −14.390 3.973 −0.131 0.8870 16 −41.712 14.055 −0.290 2.7115 17

Reference − (0th to 3rd order) −1.749 4.564 −0.016 0.2293 18 −5.255 13.911 −0.029 0.7280 18

Reference − (0th to 4th order) −1.200 0.319 −0.008 0.0609 20 −3.744 1.125 −0.009 0.1832 21

Reference − (0th to 5th order) −0.213 0.264 −0.005 0.0320 23 −0.449 0.830 0.000 0.0766 24

Reference − (0th to 6th order) −0.195 0.132 −0.004 0.0297 26 −0.401 0.354 0.000 0.0672 26

Reference − (0th to 7th order) −0.192 0.131 −0.004 0.0296 29 −0.396 0.350 0.000 0.0666 28
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Table 3: Statistical characteristics of differences between the reference values and those obtained

using the “gradient approach in spherical coordinates”; used EGM2008 to degree 2190; gravity

disturbances are in mGal, second radial derivatives of disturbing potential in E and CPU time in s.
δgsa Trr

Min Max Mean RMS CPU time Min Max Mean RMS CPU time

Reference − (0th order) −101.0 102.9 −3.8 17.2 15 −284.3 241.1 −1.8 35.7 14

Reference − (0th to 2nd order) −11.0 9.6 −2.4×10−2 1.4 19 −30.1 26.8 −2.1×10−2 4.3 18

Reference − (0th to 5th order) −0.1 0.1 7.8×10−5 1.8×10−2 27 −0.4 0.4 −1.8×10−4 6.0×10−2 25

Reference − (0th to 10th order) −1.3×10−5 9.8×10−6 3.8×10−9 1.4×10−6 38 −4.2×10−5 3.2×10−5 1.0×10−10 4.6×10−6 38

Reference − (0th to 15th order) −1.5×10−10 1.2×10−10 2.4×10−14 1.5×10−11 49 −4.7×10−10 3.6×10−10 1.2×10−13 4.7×10−11 46

Reference − (0th to 20th order) −4.8×10−11 4.3×10−11 −1.8×10−14 4.8×10−12 60 −9.8×10−11 1.2×10−10 −1.3×10−14 9.4×10−12 56
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Table 4: Computation time of the full disturbing tensor in the LNOF at 9 337 681 points using

isGrafLab and the software presented by Eshagh and Abdollahzadeh (2012); used EGM2008 to

degree 2190; K – the maximum order of the Taylor series; SFCM, ERA – the standard forward

column method, the extended-range arithmetic, respectively (two of the three approaches for com-

puting fnALFs in isGrafLab).

isGrafLab (K = 3) isGrafLab (K = 5) Eshagh and Abdollahzadeh

SFCM / ERA SFCM / ERA

CPU time (h) 0.7 / 1.0 1.1 / 1.5 13.4
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Global geopotential model of the Earth

Browse...

GM of GGM (m3.s-2) R of GGM (m)

3986004.415E+8 6378136.3 0

Use maximum degree of GGM

Order of Taylor series:

Browse...

Lat. min (°)

Lon. min (°)

Height above the reference surface (m) Matrix

Export data

Export report

Computation of fnALFs

Display data settings

Output folder and file

OK

Geopotential model and reference system selection

Irregular surface selection

Calculated parameters and output selection

Export data in *.mat

Lon. step (°) Lon. max (°)

Lat. step (°) Lat. max (°)

Column vector

GRS80

Type of the input coordinates: Ellipsoidal Spherical

nmin nmax Ellipsoid

Structure of the input file:

Close

3

Irregular surface file

Figure 1: isGrafLab graphical user interface.
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Figure 2: Flowchart of the isGrafLab. Explanation of the symbols and abbreviations in the

flowchart: ϕ (θ), λ – ellipsoidal (spherical) coordinates of the evaluation points, h0 (r0 − R) –

height of the regular surface above the reference ellipsoid (sphere), IS – input file containing the

heights of the irregular surface, GGM – global geopotential model of the Earth; Error check 1 –

the first error check of the input data; DTM – digital terrain model; Error check 2 – the sec-

ond error check of the input data; SFCM, MFCM, ERA – computation of the modified fnALFs

using the standard forward column method, the modified forward column method or the extended-

range arithmetic approach, respectively; dmfnALFs – computation of the first-order derivatives of

the modified fnALFs; ddmfnALFs – computation of the second-order derivatives of the modified

fnALFs; NF – number of computing functionals (from 1 to 4); K – order of Taylor series (K ≥ 0);

η′, ξ′, . . . ,W ′rr – cumulative sets of the computations of functionals and their derivatives on the

regular surface; η, ξ, . . . ,Wrr – final computations of the functionals and their continuation to the

irregular surface.
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Figure 3: Topography of the Himalayas within the region ϕ ∈ (26◦, 29◦), λ ∈ (86◦, 88◦) at 1′

spatial resolution. Units in metres.
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Figure 4: a Reference gravity disturbances in spherical approximation over the Himalayas, b – h

differences between the reference and the approximated gravity disturbances in spherical approx-

imation using the orders of the Taylor series K = 0, . . . , 6. Units in mGal.
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