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Technology in Bratislava, Radlinského 11, 813 68 Bratislava 15, Slovakia

Abstract

We present a novel graphical user interface program GrafLab (GRAvity Field

LABoratory) for spherical harmonic synthesis (SHS) created in MATLAB R©.

This program allows to comfortably compute 18 various functionals of the

geopotential up to an arbitrary degree and order of spherical harmonic ex-

pansion. For the most difficult part of the SHS, namely the evaluation of

the fully normalized associated Legendre functions (fnALFs), we used three

different approaches according to required maximum degree: (i) the stan-

dard forward column method (up to maximum degree 1 800, in some cases

up to degree 2 190); (ii) the modified forward column method combined

with Horner’s scheme (up to maximum degree 2 700); (iii) the extended-

range arithmetic (up to an arbitrary maximum degree). For the maximum

degree 2 190, the SHS with fnALFs evaluated using the extended-range arith-
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metic approach takes only approximately 2-3 times longer than its standard

arithmetic counterpart, i.e. the standard forward column method. In the

GrafLab, the functionals of the geopotential can be evaluated on a regular

grid or point-wise, while the input coordinates can either be read from a

data file or entered manually. For the computation on a regular grid we

decided to apply the lumped coefficients approach due to significant time-

efficiency of this method. Furthermore, if a full variance-covariance matrix

of spherical harmonic coefficients is available, it is possible to compute the

commission errors of the functionals. When computing on a regular grid,

the output functionals or their commission errors may be depicted on a map

using automatically selected cartographic projection.

Keywords: Geopotential model, Gravity field functional, Spherical

harmonic synthesis, Lumped coefficients, Commission error,

Extended-range arithmetic

1. Introduction1

In geodesy, the spherical harmonic expansion (SHE) is widely used for2

the determination of the Earth’s external gravity field. The spherical har-3

monics provide an efficient mathematical tool for computing an arbitrary4

functional of the geopotential referred to a point lying on the Earth’s surface5

or aloft; this process is known as the spherical harmonic synthesis (SHS). By6

definition, a functional is a special case of an operator, which associates to a7

function a real number (Moritz, 1980; Rektorys, 1999). The most common8

functionals of the geopotential are geoid undulation, height anomaly, grav-9

ity anomaly, gravity disturbance and deflections of the vertical. Nowadays,10
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the computation of these and many other functionals up to degree 2 190 is11

possible using the global geopotential model of the Earth (GGM) EGM200812

(Pavlis et al., 2012) and it can be expected that in the future the maxi-13

mum degree of GGMs will continue to increase. However, hand in hand with14

the increasing degree of SHE, some numerical problems associated with the15

computation of spherical harmonics occur.16

The principal problem in the computation of spherical harmonics of high17

degrees and orders is the numerical evaluation of associated Legendre func-18

tions of the first kind (ALFs) Pnm(cos θ) (Hoffmann-Wellenhof and Moritz,19

2005), which depend on the spherical co-latitude θ. Hence, ALFs are usually20

used in the fully normalized form (ibid.), which is algebraic method avoiding21

the numerical problems, so one obtains the fully normalized associated Leg-22

endre functions (fnALFs) P nm(cos θ). However, for very high degrees and23

orders (e.g. 2 700), fnALFs still range over thousands of orders of magni-24

tude and under-flow or over-flow problems occur (Holmes and Featherstone,25

2002b). Some special care has to be put on the numerical evaluation of26

fnALFs. Thus, the standard recursive algorithms for computing values of27

fnALFs (cf. Colombo, 1981; Holmes and Featherstone, 2002b) have to be28

modified.29

Holmes and Featherstone (2002b) presented an effective approach, which30

allows to compute fnALFs up to degree and order 2 700 for all co-latitudes31

without any under-flow or over-flow problems. This method is based on two32

factors: (i) eliminating the problematic term sinm(θ) from the recursions, so33

one obtains the scaled values of fnALFs P nm(cos θ)/ sinm(θ); (ii) introducing34

a global scale factor of 10−280. This two factors may be introduced into the35
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standard recursions obtaining the modified recursions, see e.g. Holmes and36

Featherstone (2002b). Once the scaled values of the fnALFs are obtained,37

the problematic term sinm(θ) is gradually re-introduced employing Horner’s38

scheme and finally, after multiplication by the reciprocal value of the global39

scale factor, the non-scaled values of fnALFs are obtained.40

These modified recursions are numerically stable up to the degree and41

order 2 700. For even higher degrees and orders, under-flow or over-flow42

problems occur again. Thus, this approach is also limited. Fukushima (2011)43

has introduced another approach, which enables to compute fnALFs up to44

extremely high degree such as 232 = 4 294 967 296, by modifying the idea45

of extended-range arithmetic (Smith et al., 1981). In extended-range arith-46

metic, a non-zero arbitrary real number X is expressed as X = xBiX , where47

B is the radix (a large power of 2), x is the significand and iX is the exponent.48

Another words, a separate storage location to the exponent of each floating-49

point number is allocated (Wittwer et al., 2008). In the double-precision50

Fukushima (2011) used the radix value B = 2960. Hence, much bigger and51

smaller numbers can be represented in the IEEE (Institute of Electrical and52

Electronic Engineers’) double-precision, so fnALFs of an arbitrary degree and53

order can be evaluated using the standard recursions without an under-flow54

problem. For more details about the extended-range arithmetic, the reader55

is advised to Fukushima (2011) or Smith et al. (1981).56

Several computer programs for evaluating various functionals of the geopo-57

tential have been developed so far, e.g. Holmes and Pavlis (2008); Janák and58

Šprlák (2006); Sanso and Sona (2001); Smith (1998); Tscherning et al. (1983);59

Wittwer et al. (2008). However, most of them, except Wittwer et al. (2008),60
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are restricted to a certain maximum degree of SHE (e.g. 2 700). In this pa-61

per, we present the novel MATLAB R©-based graphical user interface (GUI)62

program for computing functionals of the geopotential up to an arbitrary63

degree and order. The outline of the paper is as follows: in section 2, the64

accuracy tests for the numerical evaluation of fnALFs using the three above65

mentioned approaches (i.e. the standard recursions, the modified recursions66

combined with Horner’s scheme and the extended-range arithmetic) are in-67

troduced. The SHS process, the lumped coefficients approach and the error68

propagation are described in this section as well. The developed software69

GrafLab and the numerical tests are introduced in section 3. In section 4,70

the contributions of the designed software and summary are presented.71

2. Spherical harmonic synthesis72

Let us start with the basic and well-known formula for the Earth’s exter-73

nal gravitational potential, expressed in the truncated series of the spherical74

harmonics (Hoffmann-Wellenhof and Moritz, 2005)75

V (r, θ, λ) =
GM

r
+
GM

r

M∑
n=2

(
R

r

)n n∑
m=0

(
Cnm cosmλ

+ Snm sinmλ
)
P nm(cos θ),

(1)

in which GM is the geocentric gravitational constant of the Earth, R is76

the radius of the Earth, (r, θ, λ) is the triplet of the spherical coordinates77

(spherical radius, spherical co-latitude and spherical longitude, respectively),78

P nm(cos θ) are the fnALFs of degree n and order m, Cnm and Snm are the79

fully normalized spherical harmonic coefficients of degree n and order m and80

M is the maximum degree of the SHE. Eq. (1) may be written in the form81
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of inverted summations over n and m as82

V (r, θ, λ) =
GM

r
+
GM

r

M∑
m=0

[
cosmλ

M∑
n=µ

(
R

r

)n
Cnm P nm(cos θ)

+ sinmλ
M∑
n=µ

(
R

r

)n
Snm P nm(cos θ)

]
,

(2)

where µ is either 2 or m, whichever is the greater. If the fixed-degree re-83

cursions have been used to compute fnALFs, Eq. (1) is more suitable, while84

Eq. (2) should be used with the fixed-order recursions. In geodesy, Eq. (2)85

and fixed-order recursions are usually preferred rather than Eq. (1) and fixed-86

degree recursions.87

In fact, Eq. (1) as well as Eq. (2) can be considered as the basic formulae88

of SHS, from which an arbitrary functional of the geopotential can be derived,89

see e.g. Barthelmes (2009).90

2.1. Numerical computation of the fully normalized associated Legendre func-91

tions and their first- and second-order derivatives92

The numerical evaluation of fnALFs and their derivatives up to a high93

degree is the most difficult part of the SHS. In the GrafLab, we used three94

different approaches, which have been mentioned in section 1: (i) the stan-95

dard forward column method (Holmes and Featherstone, 2002b); (ii) the96

modified forward column method (ibid.); (iii) the extended-range arithmetic97

(Fukushima, 2011). It is not the purpose of this paper to recapitulate here re-98

cursions that can be found in many literature (Bosch, 2000; Colombo, 1981;99

Fantino and Casotto, 2009; Fukushima, 2011, 2012; Holmes and Feather-100

stone, 2002a,b). However, it should be mentioned that these recursions can101
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be modified by introducing the term (R/r)n so that we finally get102

P̃nm(cos θ) =

(
R

r

)n
P nm(cos θ), (3)

which we name the modified fnALF. The main reason for doing this is that103

the modified fnALFs may be evaluated directly during the recursions and104

thus reduced the computation time of the whole SHS process, since large105

matrix multiplications are eliminated. The reader can find more about this106

approach e.g. in Bethencourt et al. (2005). In this section, we will focus on107

the numerical stability of the recurrence relations used up to high and ultra-108

high degrees. For this tests, the ordinary fnALFs instead of the modified109

fnALFs were used.110

In order to verify the numerical accuracy of computed fnALFs and their111

derivatives, we used the accuracy test presented in Holmes and Featherstone112

(2002b). Independently on the co-latitude, the following formulae must hold113

(Fukushima, 2011, 2012)114

I(0) =
M∑
n=0

n∑
m=0

(
P

(0)

nm(cos θ)
)2

= (M + 1)2, ∀θ, (4a)

115

I(1) =
M∑
n=0

n∑
m=0

(
P

(1)

nm(cos θ)
)2

=
M(M + 2)(M + 1)2

4
, ∀θ, (4b)

116

I(2) =
M∑
n=0

n∑
m=0

(
P

(2)

nm(cos θ)
)2

=

(
M2 + 2M − 1

2

)
I(1), ∀θ, (4c)

wherein P
(0)

nm(cos θ), P
(1)

nm(cos θ) and P
(2)

nm(cos θ) denote the zero-, first- and117

second-order derivatives of fnALFs with respect to the spherical co-latitude,118

respectively. The identity error is then given as119

δI(d) =

∣∣∣∣∣ I
(d)
computed

I
(d)
theoretical

− 1

∣∣∣∣∣ , (5)
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where d = 0, 1, 2 denotes the order of the derivatives of fnALFs. Note that in120

the case of the modified forward column method, the scaled values of fnALFs121

or their derivatives must be combined with Horner’s scheme, see Holmes and122

Featherstone (2002b).123

The values of P
(d)

nm(cos θ) range over thousands of orders of magnitude and124

therefore cannot be squared (see Eqs. (4a)-(4c)) in double precision due to125

the under-flow and over-flow problems. Hence, these values were computed126

in double precision using the above mentioned approaches, subsequently they127

were converted to quadruple precision and finally, squared and summed in128

quadruple precision. However, MATLAB R© does not support the quadruple129

precision, thus, these algorithms were rewritten into Fortran 90, compiled by130

the Intel Visual Fortran Composer XE 2011 and executed at a computer with131

2.5 GHz dual-core CPU and 3 GB RAM under the 32 bit Windows 7 OS. The132

routines used for computing fnALFs using the extended-range arithmetic,133

written in Fortran 90, are available from Fukushima (2011). These routines134

were rewritten into the MATLAB R© and used in the GrafLab software.135

Based on our numerical accuracy tests, the three above mentioned ap-136

proaches may be used up to the following maximum degrees:137

(i) the standard forward column method: Mmax = 1 800,138

(ii) the modified forward column method: Mmax = 2 700,139

(iii) the extended-range arithmetic: up to an arbitrary degree.140

These statements are supported by Figures A.1 - A.3, which represent the141

base-10 logarithm of the identity errors δI(d) computed for all integer values142

of co-latitudes 0◦ ≤ θ ≤ 90◦ in the case of d = 0 and 0◦ < θ ≤ 90◦ if143

d = 1, 2. Note that the recurrence relations used for evaluating the first- and144
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second-order derivatives of fnALFs are singular at poles (Fukushima, 2012,145

Appendix A.1).146

Figure A.1 should be positioned here147

Figure A.2 should be positioned here148

Figure A.3 should be positioned here149

Furthermore, inspection of Figure A.4 shows that the standard forward150

column method may also be used up to degree M = 2 190, but only for151

the co-latitudes θ ∈ 〈0◦, 10◦〉 ∪ 〈34◦, 90◦〉 in the case of fnALFs and θ ∈152

(0◦, 10◦〉 ∪ 〈34◦, 90◦〉 in the case of their derivatives. The computational labor153

of this approach is the lowest, therefore this approach should be applied if154

possible. We will focus on the time-efficiency of these three approaches in155

section 3.2.156

Figure A.4 should be positioned here157

2.2. Lumped coefficients approach158

When applying Eq. (2) on a regular grid, it may be rewritten into a159

much efficient form. Both summation, i.e. the summation over n and sub-160

sequently over m, can be done by matrix multiplications using the lumped161

coefficients, sometimes called the Fourier coefficients. In Eq. (2), the terms162 ∑M
n=µ(R/r)nCnm P nm(cos θ) and

∑M
n=µ(R/r)n Snm P nm(cos θ) are constant163

for each meridian in the grid and therefore no need to be computed more164

than once. With this in mind, Eq. (2) may be written in the matrix form as165

V = (GM � r)�

[
1 +

(
A(θ) · cos(m · λ) + B(θ) · sin(m · λ)

)]
, (6)
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in which ANθ×(M+1)(θ) and BNθ×(M+1)(θ) are the matrices of the lumped co-166

efficients, where Nθ denotes the number of the points in one meridian, rNθ×Nλ167

is the matrix of the spherical radii of every point in the grid, Nλ denotes the168

number of the points in one latitude parallel, θNθ×1 is the column vector of169

the spherical co-latitudes, λ1×Nλ is the row vector of the spherical longitudes170

and m(M+1)×1 is the column vector with the structure m =
[
0 1 . . . M

]>
.171

The symbol � denotes the Hadamard product (Grafarend, 2006), which may172

be used for the matrices of the same dimensions in order to multiply each173

corresponding elements of the matrices (element-wise product), while the174

symbol · denotes the Cayley product (matrix product) (ibid.). We also in-175

troduced the symbol �, which denotes an element-wise division of a scalar176

(or a matrix) by a matrix. In fact, in Eq. (6) only the vector rNθ×1 is needed177

instead of the matrix rNθ×Nλ , and each column of the matrix in the square178

brackets in Eq. (6) may be multiplied using the Hadamard product by the179

vector rNθ×1, so there is no need to store the redundant data. In MATLAB R©,180

the built-in function bsxfun R© is designed for this purpose. However, for the181

sake of clarity we used this notation in the whole paper, but in the GrafLab,182

the bsxfun R© function was used.183

The vectors of the lumped coefficients of order m are defined as184

Am(θ)

Bm(θ)

 = P̃m ·

Cm

Sm

(7)
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where P̃m is the matrix of the modified fnALFs with the structure185

P̃m =


P̃m,m(cos θ1) P̃m+1,m(cos θ1) · · · P̃M,m(cos θ1)

P̃m,m(cos θ2) P̃m+1,m(cos θ2) · · · P̃M,m(cos θ2)
...

...
. . .

...

P̃m,m(cos θNθ) P̃m+1,m(cos θNθ) · · · P̃M,m(cos θNθ)

 (8)

and186

Cm =
[
Cm,m Cm+1,m · · · CM,m

]>
, (9a)

187

Sm =
[
Sm,m Sm+1,m · · · SM,m

]>
. (9b)

Finally, we obtain the full matrices of the lumped coefficients188

A(θ) =
[
Am=0(θ) Am=1(θ) · · · Am=M(θ)

]
, (10a)

189

B(θ) =
[
Bm=0(θ) Bm=1(θ) · · · Bm=M(θ)

]
. (10b)

Using this approach, an arbitrary functional of the geopotential can be190

evaluated on a regular grid much faster than using the point-wise approach191

with two loops, one degree-depended and one order-depended. In fact, the192

factor of increased computational speed is of several thousands, which is193

remarkable.194

2.3. Error propagation195

In general, the spherical harmonic coefficients are estimated by the least196

squares method using terrestrial and/or satellite measurements, which are197

not errorless. The least squares method enables to estimate the full variance-198

covariance matrix of these coefficients as well. When computing an arbitrary199
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functional of the geopotential using these estimated coefficients, their er-200

rors are propagated to the functional obeying the error variance-covariance201

propagation law (Grafarend, 2006). This error is known as the commission202

error. For the linear transformation of the variance-covariance matrix of203

the spherical harmonic coefficients to the variance-covariance matrix of the204

gravitational potential the following formula may be written205

ΣV = A ·ΣSHC ·A>, (11)

where ΣSHC is the variance-covariance matrix of the spherical harmonic co-206

efficients with the structure207

ΣSHC

=



vCC20,20 cCC20,30 · · · cCC20,M0 cCC20,21 cCS20,21 cCC20,31 · · · cCS20,MM

cCC30,20 vCC30,30 · · · cCC30,M0 cCC30,21 cCS30,21 cCC30,31 · · · cCS30,MM

...
...

. . .
...

...
...

... · · ·
...

cCCM0,20 cCCM0,30 · · · vCCM0,M0 cCCM0,21 cCSM0,21 cCCM0,31 · · · cCSM0,MM

cCC21,20 cCC21,30 · · · cCC21,M0 vCC21,21 vCS21,21 vCC21,31 · · · vCS21,MM

cSC21,20 cSC21,30 · · · cSC21,M0 cSC21,21 vSS21,21 vSC21,31 · · · vSS21,MM

cCC31,20 cCC31,30 · · · cCC31,M0 cCC31,21 cCS31,21 vCC31,31 · · · cCS31,MM

...
... · · ·

...
...

...
...

. . .
...

cSCMM,20 cSCMM,30 · · · cSCMM,M0 cSCMM,21 cSSMM,21 cSCMM,31 · · · vSSMM,MM



,
(12)

where vCC20,20 denotes the variance of the coefficient C20, c
CS
20,21 is the covariance208

between the coefficients C20 and S21, etc., and A is the design matrix of209

the partial derivatives of Eq. (2) with respect to the individual spherical210

harmonic coefficients. Note that the partial derivatives in the matrix A must211

correspond to the organization of the individual elements in the matrix ΣSHC.212

Since the structure of the matrix ΣSHC has not yet been standardized, only213

this particular structure of the variance-covariance matrix, which is probably214

the most common, can be recognized by the GrafLab. Finally, the square215
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roots of the diagonal elements of the matrix ΣV represent the commission216

errors of the gravitational potential in the particular computing points.217

Note that the matrix ΣSHC of a GGM may or may not be calibrated.218

If the matrix ΣSHC is calibrated, the computed commission errors may be219

considered as real. If this matrix is not calibrated, the evaluated commission220

errors must be considered only as a relative indicator of accuracy of the GGM221

in a certain area on the globe with respect to another area.222

3. Software presentations223

3.1. Description of the software224

In this section, we will describe in detail the created software GrafLab225

(GRAvity Field LABoratory) and the basic principles of manipulation with226

the software. The source code of the GrafLab, as well as its graphical user227

interface (GUI), have been written in MATLAB R©. The GUI, see Figure A.5,228

allows comfortable and intuitive manipulation with all functionalities of the229

software.230

Figure A.5 should be positioned here231

The GUI of the application is visually divided into three panels:232

(i) Geopotential model and reference system selection: At first, the input233

GGM file or its error variance-covariance matrix must be imported using the234

Browse. . . button. The input GGM file must have one of the two standard-235

ized structures, see Table A.1 and Table A.2. Only this two structures can236

be recognized by the GrafLab. In addition to the spherical harmonic coeffi-237

cients, the input file may or may not contains the fifth and the sixth column238
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with their standard deviations. The input file may either be an ASCII file239

or a binary MAT-file. In case of the GGM with a high maximum degree of240

SHE, it is recommended to use the binary MAT-file, since it can be loaded241

much faster.242

Table A.1 should be positioned here243

Table A.2 should be positioned here244

The input ASCII file of error variance-covariance matrix must have the245

structure as shown in the Table A.3. A binary MAT-file may be used to246

import error variance-covariance matrix as well. However, in this case, the247

empty arrays in Table A.3 must be filled with zeroes or corresponding co-248

variances.249

Table A.3 should be positioned here250

Most of GGMs have the same values of the geocentric gravitational con-251

stant and the radius of the Earth, therefore in this panel GrafLab automat-252

ically offers these values for the computation. However, they may be simply253

replaced by the required values, if necessary. The nmin value of SHE is implic-254

itly set to 2 and cannot be changed, unlike the value of nmax. Only integer255

values of nmax in the interval nmax ∈ 〈2,M〉 are accepted. From the pop-256

up menu Ellipsoid, the normal gravity field generated by the equipotential257

ellipsoid WGS84 (NIMA, 2000) or GRS80 (Moritz, 2000) can be selected.258

(ii) Point type selection: In the point type selection panel, one of three or-259

ganizations of the evaluation points must be specified by selecting the check-260

box: Grid, Load data or Point-wise. If the grid is selected, the minimum,261

14



maximum and discretization step in the ellipsoidal latitude and ellipsoidal262

longitude directions must be entered. The array h (m) denotes the constant263

ellipsoidal height of the grid above the reference ellipsoid. For the com-264

putation on a regular grid, the lumped coefficients approach described in265

section 2.2 is used.266

To import the computational points from a data file, the Load data check-267

box must be selected and subsequently, the data file must be imported using268

the Browse. . . button next to the checkbox. The data file may contain es-269

sentially an arbitrary number of lines and in every line of the file, the triplet270

of the ellipsoidal coordinates (ellipsoidal latitude, ellipsoidal longitude and271

ellipsoidal height) must be given.272

After selecting the checkbox Point-wise, an arbitrary point defined also273

by the triplet of the ellipsoidal coordinates can be entered manually using the274

arrays phi (◦), lambda (◦), h (m). In case of several points, the coordinates275

in each array must be separated by the comma or by the space. This point276

type selection is suitable if only a few points are to be determined, so there277

is no need to create a data file to import.278

In the last two mentioned cases of the point type selection, the lumped279

coefficients approach cannot be applied due to irregular distribution of the280

points. Therefore we used two loops, one degree-depended and one order-281

depended, and programmed the routines for computing all functionals as it282

is shown in Eq. (2).283

In each of the three above mentioned point type selections, the entries284

must be either in the form of floating point numbers with decimal dots or285

integer values.286
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(iii) Calculated parameters and output selection: Using the four pop-up287

menus on the left side of this panel, user can simply choose, which func-288

tionals of the geopotential are to be computed. Note that at least one and289

maximum four functionals may be computed simultaneously. GrafLab per-290

mits to compute the following functionals of the geopotential (the value in291

the superscript denotes the level of computational demand; (1) is small, (2)292

is medium and (3) is high): gravitational potential V (1), diagonal compo-293

nents of the gravitational tensor in the spherical coordinates V
(3)
rr , V

(3)
θθ , V

(3)
λλ ,294

non-diagonal components of the gravitational tensor in the spherical coor-295

dinates V
(3)
rθ , V

(3)
rλ , V

(3)
θλ , diagonal components of the gravitational tensor in296

the local north-oriented frame (LNOF) V
(2)
xx , V

(2)
yy , V

(2)
zz , non-diagonal compo-297

nents of the gravitational tensor in the LNOF V
(3)
xy , V

(3)
xz , V

(3)
yz , gravity po-298

tential W (1), gravity g(2), gravity in spherical approximation g
(1)
sa , second299

radial derivative of gravity potential W
(1)
rr , disturbing potential T (1), grav-300

ity disturbance δg(2), gravity disturbance in spherical approximation δg
(1)
sa ,301

gravity anomaly in spherical approximation ∆g
(1)
sa , second radial derivative302

of disturbing potential T
(1)
rr , diagonal components of the disturbing tensor303

in the spherical coordinates T
(3)
rr , T

(3)
θθ , T

(3)
λλ , non-diagonal components of the304

disturbing tensor in the spherical coordinates T
(3)
rθ , T

(3)
rλ , T

(3)
θλ , diagonal com-305

ponents of the disturbing tensor in the LNOF T
(2)
xx , T

(2)
yy , T

(2)
zz , non-diagonal306

components of the disturbing tensor in the LNOF T
(3)
xy , T

(3)
xz , T

(3)
yz , north-south307

component of the deflection of the vertical ξ(2), east-west component of the308

deflection of the vertical η(1), total deflection of the vertical Θ(2), geoid un-309

dulation N (2), generalized height anomaly ζ
(1)
Ell, height anomaly ζ(2). In or-310

der to stay brief, we do not introduce here the mathematical formulae for311
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computing each functional, but these can be found in the pdf file Defini-312

tion of functionals of the geopotential used in GrafLab software.pdf available313

at 1. For evaluating disturbing and gravitational tensor in the LNOF, we used314

the non-singular expressions, which can be found e.g. in Petrovskaya and Ver-315

shkov (2006). For practical reasons, we slightly modified these formulae, see316

Appendix A.317

To compute geoid undulation N and height anomaly ζ, the digital terrain318

model, e.g. DTM2006.0 (Pavlis et al., 2007), must be imported. Only one319

particular structure of the DTM file, shown in Table A.1, can be recognized320

by the GrafLab. If these two functionals are to be computed, immediately321

after clicking the OK button, the dialog window from which the input DTM322

file must be imported will appear.323

Each functional of the geopotential may be evaluated using any of the324

three mentioned approaches for computing fnALFs except for the gravita-325

tional and disturbing tensors in the LNOF. Since these non-singular expres-326

sions have been slightly modified, the modified forward column method com-327

bined with Horner’s scheme is not efficient for the new formulae and therefore328

it was not used in this case.329

In order to evaluate the commission errors of the functionals, the Com-330

mission error check box must be selected. GrafLab allows to compute the331

commission errors (see section 2.3) of the each above mentioned functional ex-332

cept for the gravitational and disturbing tensors in the LNOF: Txx, Tyy, Tzz;333

Txy, Txz, Tyz; Vxx, Vyy, Vzz; Vxy, Vxz, Vyz. One should keep in mind that the334

1http://www.svf.stuba.sk/en/departments/department-of-theoretical-geodesy/

science-and-research/downloads.html?page_id=4996
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evaluation of commission error has much higher requirements on the com-335

puter, because of the large size of the matrix ΣSHC. In practice it means336

that the maximum degree M must be reduced from thousands or hundreds337

to tens, and number of computing points have to be decreased as well.338

By clicking the button Computation of fnALFs, a new dialog window will339

appear, see Figure A.6, in which user may choose one of the three approaches340

for evaluating values of fnALFs (see section 2.1).341

Figure A.6 should be positioned here342

The computed data may be depicted on a map using automatically se-343

lected cartographic projection. By clicking the button Display data settings,344

another dialog window illustrated by Figure A.7 will appear. Here, user can345

set up the required output parameters of the exported map. This option is346

available only if the computation on a regular grid has been chosen. Demon-347

strations of exported maps are shown in Figure A.8 and Figure A.9.348

Figure A.7 should be positioned here349

Figure A.8 should be positioned here350

Figure A.9 should be positioned here351

The button Output folder and file permits to specify the output folder352

and prefix of the all exported files, i.e. without any suffix (e.g. Prefix).353

The data file (e.g. Prefix.txt) with the computed data may be created by354

selecting the checkbox Export data. The report file, which contains the infor-355

mations about the computation, see Table A.4, may be created by selecting356
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the Export report checkbox. This file automatically obtains name with the357

suffix Report.txt, e.g. Prefix Report.txt. If the Display data checkbox has358

been selected, GrafLab creates also a graphical file (or files, depending on359

the number of computing functionals) according to chosen graphic file format360

(bmp, emf, eps, jpeg, pdf, png or tiff).361

Table A.4 should be positioned here362

When all the required input parameters and input files have been entered,363

after clicking the OK button, the computation will start. On the left from364

this button, there is a status line, which provides short explanations during365

the whole computational process (Loading GGM file. . . , current value of the366

variable m in the order-dependent loop, Displaying data. . . , . . . ), so one can367

clearly see in which part of the computation is GrafLab. After successful368

computation, the status Computation has been finished will appear. If any369

of the input parameters or input files have been entered in a wrong format,370

GrafLab will open a warning dialog or error dialog with description of the371

error.372

The whole source code of the program called GrafLab.m is written as373

a one function. It contains approximately 8 000 lines of the source code,374

therefore in Figure A.10 we provide a simple flowchart of the program, so375

one can clearly see its structure.376

Figure A.10 should be positioned here377

19



3.2. Testing of the software378

In this section, we focus on the efficiency of the algorithms used in the379

GrafLab. We performed two separate tests, one for the lumped coefficients380

approach (computation on a regular grid) and the second for the point-wise381

approach (computation on irregularly distributed points). In each exper-382

iment we tested the time-efficiency of all three approaches for computing383

values of fnALFs in the context of SHS. For these tests we chose two func-384

tionals: disturbing potential and disturbing tensor in the LNOF (diagonal385

and off-diagonal elements separately). All numerical experiments were per-386

formed on an ordinary computer with 2.5 GHz dual-core CPU and 3 GB387

RAM under the 32 bit Windows 7 OS.388

In Figure A.11 and Figure A.12 we plot the CPU time for computing389

disturbing potential using M = 360 and M = 2 190, respectively, on a390

global grid versus different grid resolution. The same numerical tests using391

disturbing tensor are illustrated in Figure A.13 and Figure A.14. Note that392

the standard forward column method should not be applied on a global grid393

if M > 1 800, see Figure A.4. However, in order to assess the time-efficiency394

of the algorithm only, it was used.395

Figure A.11 should be positioned here396

Figure A.12 should be positioned here397

Figure A.13 should be positioned here398

Figure A.14 should be positioned here399

Figure A.13 and Figure A.14 reveal that all gravity gradients in the LNOF400

20



(i.e. diagonal and off-diagonal elements of the tensor) can be synthesized on401

a global grid 5′ × 5′ within 74 s if M = 360 and on a global grid 10′ × 10′402

within 936 s if M = 2 190.403

Similar tests, see Figures A.15 - A.18, were done for the point-wise ap-404

proach, in which we used the computational points randomly distributed on405

the globe.406

Figure A.15 should be positioned here407

Figure A.16 should be positioned here408

Figure A.17 should be positioned here409

Figure A.18 should be positioned here410

As expected, the point-wise approach is significantly more time-consuming411

than the lumped coefficients approach. Hence, for a high maximum degree412

(e.g. M = 2 190) we recommend to use this approach for tens of thousands413

of computation points at most.414

In general, from Figures A.11 - A.18 it is seen that the SHS with fnALFs415

evaluated using the extended-range arithmetic takes only approximately 2-3416

times longer than using the standard forward column method. Furthermore,417

for a large data set on a grid and maximum degrees ranging from 1 801 to418

2 700, it is much more effective to use the extended-range arithmetic than the419

modified forward column method. In contrast, in the point-wise approach420

and maximum degrees in the same interval, the modified forward column421

method should be preferred rather than the extended-range arithmetic, since422

it required significantly less computation time.423

21



As mentioned, the tests were performed on a 32 bit version of MATLAB R©
424

and Windows 7 OS. However, on a 64 bit architecture we found the algo-425

rithm for computing fnALFs using extended-range arithmetic extremely slow.426

Thus, to make this algorithm more effective on this architecture, we slightly427

modified the program in order to speed up the extended-range arithmetic428

approach. However, on a 64 bit version of MATLAB R© the extended-range429

arithmetic approach still remains 8-10 times slower than the standard forward430

column method. During the computation, GrafLab automatically identifies431

the bit architecture of MATLAB R© on which the computation is performed432

and uses the appropriate version of the algorithm.433

4. Summary434

In this paper, we have been presented a new MATLAB R©-based graphical435

user interface program for spherical harmonic synthesis. GrafLab allows436

to easily compute and depict 18 various functionals of the geopotential as437

well as their commission errors. Fully normalized ALFs may be obtained438

using three different approaches from which one approach enables to evaluate439

the fnALFs up to an arbitrary degree and order in the cost of only 2-3440

times increased computation time compared with the standard algorithms.441

A modified non-singular expressions for the gravity gradients in the LNOF442

have been introduced as well.443

The main advantages of the GrafLab are that it is not restricted to a444

maximum degree of SHE essentially, it is fast, versatile and simple for usage445

through an intuitive and comfortable GUI. The primary exploitation of the446

GrafLab is supposed to be in scientific tasks related to the spherical harmonic447
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synthesis of functionals of the geopotential. Since the program is controlled448

through a convenient GUI, it may be used as an efficient tool for educational449

purposes as well.450
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Appendix A. Modified non-singular expressions for the gravity456

gradients in the LNOF457

The used non-singular expressions for the gravity gradients in the LNOF458

can be found e.g. in Petrovskaya and Vershkov (2006). We will not reca-459

pitulate here all those formulae. As an example, let us mentioned only one460

particular expression for the element Txx, which has the following form461

Txx =
GM

r3

M∑
n=2

(
R

r

)n n∑
m=0

(
Cnm cosmλ+ Snm sinmλ

)
×
(
anm P n,m−2(cos θ)

+ [bnm − (n+ 1)(n+ 2)] P nm(cos θ)

+ cnm P n,m+2(cos θ)
)
,

(A.1)

in which462

anm = 0, m = 0, 1 (A.2)
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463

anm =

√
1 + δm,2

4

√
n2 − (m− 1)2

×
√
n+m

√
n−m+ 2, 2 ≤ m ≤ n

(A.3)

464

bnm =
(n+m+ 1)(n+m+ 2)

2 (m+ 1)
, m = 0, 1 (A.4)

465

bnm =
n2 +m2 + 3n+ 2

2
, 2 ≤ m ≤ n (A.5)

466

cnm =

√
1 + δm,0

4

√
n2 − (m+ 1)2

√
n−m

×
√
n+m+ 2, m = 0, 1

(A.6)

467

cnm =
1

4

√
n2 − (m+ 1)2

√
n−m

√
n+m+ 2, 2 ≤ m ≤ n (A.7)

468

δp,q =

1, p = q,

0, p 6= q.

(A.8)

From Eq. (A.1), one can see that in addition to the term P nm(cos θ), two469

other terms P n,m−2(cos θ) and P n,m+2(cos θ) must be computed for each m.470

From the practical numerical point of view, this is not an issue, if fixed-degree471

recursions have been used to evaluate fnALFs. In this case, for each m these472

terms have been already computed with the term P nm(cos θ) essentially. In473

the GrafLab, however, we used fixed-order recursions, which are preferred in474

geodesy. In this case, with every change of m in the order-dependent loop, it475

is necessary to evaluate not only the term P nm(cos θ), but also the two other476

terms. Another words, redundant computations occur. Thus, we modified477

Eq. (A.1) in the way that only the term P nm(cos θ) is needed to be computed.478
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We present Eq. (A.1) in the following form479

Txx =
GM

r3

M∑
n=2

(
R

r

)n
×

n∑
m=0

[ (
Cn,m+2 cos(m+ 2)λ+ Sn,m+2 sin(m+ 2)λ

)
an,m+2

+
(
Cnm cosmλ+ Snm sinmλ

)
(bnm − (n+ 1)(n+ 2))

+
(
Cn,m−2 cos(m− 2)λ+ Sn,m−2 sin(m− 2)λ

)
cn,m−2

]
× P nm(cos θ),

(A.9)

where480

Cn,m+2

Sn,m+2

cos(m+ 2)λ

sin(m+ 2)λ

an,m+2


= 0, m+ 2 > n, (A.10)

481

Cn,m−2

Sn,m−2

cos(m− 2)λ

sin(m− 2)λ

cn,m−2


= 0, m− 2 < 0. (A.11)

The main idea of Eq. (A.9) is that the set of spherical harmonic co-482

efficients is usually stored during the whole computational process, hence483

the coefficients Cn,m+2, Sn,m+2 and Cn,m−2, Sn,m−2 may be simply restored484

when necessary instead of the redundant computation of P n,m−2(cos θ) and485
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P n,m+2(cos θ) in Eq. (A.1). The formulae for the remaining elements Tyy, Tzz, Txy, Txz, Tyz486

may be easily modified in the same way.487
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Table A.1: Structure of the input GGM file – spherical harmonic coefficients sorted pri-

marily according to degrees.

n m Cnm Snm

2 0 -0.48417E-03 0.00000E+00

2 1 -0.20662E-09 0.13844E-08

2 2 0.24394E-05 -0.14003E-05

3 0 0.95716E-06 0.00000E+00
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Table A.2: Structure of the input GGM file – spherical harmonic coefficients sorted pri-

marily according to orders.

n m Cnm Snm

2 0 -0.48417E-03 0.00000E+00

3 0 0.95712E-06 0.00000E+00

4 0 0.53998E-06 0.00000E+00

5 0 0.68658E-07 0.00000E+00
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Table A.3: Structure of the input file of error variance-covariance matrix – spherical

harmonic coefficients sorted primarily according to orders; nmin = 2; nmax = 3; the

column CS determines whether the variance and covariances in the particular line are

related to the coefficient Cnm (if CS = 0) or to the coefficient Snm (if CS = 1).

CS n m variances and covariances of the spherical harmonic coefficients

0 2 0 4.31E-25

0 3 0 -2.11E-26 2.48E-25

0 2 1 3.79E-28-1.15E-27 3.84E-25

1 2 1 -3.44E-28 4.67E-28-1.17E-27 4.16E-25

0 3 1 1.99E-27-7.61E-29 2.98E-26-3.18E-28 2.48E-25

1 3 1 1.44E-28-8.80E-29 3.42E-28 2.54E-26-3.16E-27 2.70E-25

0 2 2 8.17E-27-1.72E-27 2.94E-28 3.67E-28 9.06E-29-1.08E-27 4.02E-25

1 2 2 1.14E-27 2.94E-28-5.61E-29-3.86E-28-1.23E-27-1.50E-27 8.37E-28 4.25E-25

0 3 2 -9.38E-27 6.35E-27 1.08E-27 1.81E-27 7.12E-28 3.53E-28 3.30E-26 9.75E-29 3.07E-25

1 3 2 -1.27E-28 3.45E-27 1.59E-27 7.97E-28-1.75E-28 1.15E-28 5.51E-28 2.30E-26 2.78E-27 3.09E-25

0 3 3 7.74E-28-1.36E-28-9.93E-27 5.50E-28 9.55E-28-3.25E-27 1.06E-27-8.60E-28-2.85E-29 1.58E-28 2.74E-25

1 3 3 -1.14E-27-2.19E-28 4.51E-28-1.26E-26-1.46E-28 4.90E-27 1.25E-28-1.76E-28 1.18E-28-5.22E-29-6.97E-29 2.74E-25
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Table A.4: Demonstration of the report file created by the GrafLab.

Software GrafLab 1.00

Generating date 28-Oct-2012

Generating time 13:46:13

Computed Functionals of the geopotential

Geopotential model file go cons gcf 2 dir r1.dat

GM of the geopotential model (m3 · s−2) 3.986004415e+014

R of the geopotential model (m) 6.378136460e+006

Minimum used degree 2

Maximum used degree 240

Reference ellipsoid GRS80

Latitude limit North (deg) 90.000000000

Latitude limit South (deg) -90.000000000

Longitude limit West (deg) 0.000000000

Longitude limit East (deg) 360.000000000

Latitude parallels 1801

Longitude parallels 3601

Number of grid points 6485401

Grid height above the ellipsoid (m) 0.000

Computation time (s) 4

Computation of fully normalized ALFs Standard forward column method

Exported data file contains the following columns:

Latitude (deg) Longitude (deg) Disturbing potential (m2 · s−2)
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Figure A.1: Base-10 logarithm of the identity error δI(0) of fnALFs using: (i) the standard

forward column method (maximum degree: M = 1 800; solid line); (ii) the modified

forward column method (maximum degree: M = 2 700; dotted line); (iii) the extended-

range arithmetic (maximum degree: M = 65 536; dashed line).
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Figure A.2: Base-10 logarithm of the identity error δI(1) of the first-order derivatives of

fnALFs using: (i) the standard forward column method (maximum degree: M = 1 800;

solid line); (ii) the modified forward column method (maximum degree: M = 2 700; dotted

line); (iii) the extended-range arithmetic (maximum degree: M = 65 536; dashed line).
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Figure A.3: Base-10 logarithm of the identity error δI(2) of the second-order derivatives

of fnALFs using: (i) the standard forward column method (maximum degree: M = 1 800;

solid line); (ii) the modified forward column method (maximum degree: M = 2 700; dotted

line); (iii) the extended-range arithmetic (maximum degree: M = 65 536; dashed line).
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Figure A.4: Base-10 logarithm of the identity errors δI(0), δI(1), δI(2) of the zero-, first-

and second-order derivatives of fnALFs, respectively, using the standard forward column

method (maximum degree: M = 2 190; δI(0) – solid line; δI(1) – dotted line; δI(2) – dashed

line).
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Global geopotential model of the Earth

Browse...

GM of GGM (m3.s-2) R of GGM (m)

3986004,415E+8 6378136,3 2

Use maximum degree of GGM

GRS80

Grid Load data Browse... Point-wise

phi min (°) phi step (°) phi max (°)

lambda

min (°)

lambda

step (°)

lambda

max (°)

h (m)

phi (°)

lambda (°)

h (m)

Commission error Export data

Export reportComputation of fnALFs

Display data settings

Output folder and file

OK Close

Geopotential model and reference system selection

Point type selection

Calculated parameters and output selection

Figure A.5: GrafLab graphical user interface.
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Standard forward

column method

Modified forward

column method

combined with

Horner‘s scheme

Extended-range

arithmetic

It is recommended to use the standard forward column method

for all latitudes up to the maximum degree 1800. However, this

method may also be used for the latitudes <0°,56°> and 

<80°,90°> up to the maximum degree 2190.

It is recommended to use the modified forward column method

combined with Horner‘s scheme for all latitudes and maximum 

degrees ranging from 1801 and 2700. This method may also be

used for lower degrees than 1801, but cannot be applied for

higher degrees than 2700 due to the over-flow problem.

The extended-range arithmetic approach may be used for all

latitudes up to an arbitrary degree essentially.

OK Close

Figure A.6: Computation of fnALFs window.
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Display data

Graphic format

Colormap

Number of colors

DPI

*.png

jet

15

300

In order to export a graphic file, select this checkbox. The data

will be depicted on a map using automatically selected

cartographic projection.

Select one of the graphic format files. For a vector output it is

recommended to use *.eps graphic file and *.png format for a 

bitmap output.

Select a colormap of the output file. Mostly it is recommended to 

use the jet colormap, which ranges from blue to red, and passes

through the colors cyan, yellow and orange.

Enter a number of colors of the selected colormap. Note that

processing time may increase to a several minutes, if a large

number of colors has been entered for a large data set.

Enter a value of dots per inch of the output file.

OK Close

Figure A.7: Display data settings window.
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Figure A.8: Geoid undulation computed and depicted using the GrafLab software. The

geoid undulation is computed on the regular grid ϕ ∈ 〈35◦, 75◦〉, λ ∈ 〈−15◦, 35◦〉 with

spatial resolution 0.1◦ using EGM2008 and DTM2006.0 (maximum degree of SHE: M =

2 190).
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Figure A.9: Commission error of geoid undulation computed and depicted using the

GrafLab software. The commission errors of geoid undulation are computed on the reg-

ular grid ϕ ∈ 〈−90◦, 90◦〉, λ ∈ 〈0◦, 360◦〉 with spatial resolution 2◦ using the full error

variance-covariance matrix of GRIM5C1 (maximum degree of SHE: M = 70; the error

variance-covariance matrix is not calibrated).
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Figure A.10: Flowchart of the GrafLab. Explanation of the symbols and abbreviations

in the flowchart: ϕ, λ, h, GGM – ellipsoidal coordinates of the evaluation points, global

geopotential model of the Earth; Error check 1 – the first error check of the input data;

DTM – digital terrain model; Error check 2 – the second error check of the input data; Grid,

Load data, Point-wise – point type selection; SFCM, MFCM, ERA – computation of the

fnALFs using the standard forward column method, the modified forward column method

or the extended-range arithmetic approach, respectively; dmfnALFs – computation of the

first-order derivatives of the modified fnALFs; ddmfnALFs – computation of the second-

order derivatives of the modified fnALFs; NF – number of computing functionals (from

1 to 4); η′, ξ′, . . . ,W ′rr – cumulative sets of the computations of functionals; η, ξ, . . . ,Wrr

– final computations of the functionals.
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Figure A.11: CPU time for synthesis of disturbing potential using M = 360 versus grid

resolution (SFCM - standard forward column method; MFCM - modified forward column

method; ERA - extended-range arithmetic).
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Figure A.12: CPU time for synthesis of disturbing potential using M = 2 190 versus grid

resolution (SFCM - standard forward column method; MFCM - modified forward column

method; ERA - extended-range arithmetic).
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Figure A.13: CPU time for synthesis of disturbing tensor using M = 360 versus grid

resolution (SFCM - standard forward column method; ERA - extended-range arithmetic).
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Figure A.14: CPU time for synthesis of disturbing tensor using M = 2 190 versus grid

resolution (SFCM - standard forward column method; ERA - extended-range arithmetic).
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Figure A.15: CPU time for synthesis of disturbing potential using M = 360 versus number

of points (SFCM - standard forward column method; MFCM - modified forward column

method; ERA - extended-range arithmetic).
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Figure A.16: CPU time for synthesis of disturbing potential using M = 2 190 versus

number of points (SFCM - standard forward column method; MFCM - modified forward

column method; ERA - extended-range arithmetic).
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Figure A.17: CPU time for synthesis of disturbing tensor using M = 360 versus number

of points (SFCM - standard forward column method; MFCM - modified forward column

method; ERA - extended-range arithmetic).
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Figure A.18: CPU time for synthesis of disturbing tensor using M = 2 190 versus number

of points (SFCM - standard forward column method; MFCM - modified forward column

method; ERA - extended-range arithmetic).
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