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Abstract Cap-modified spectral gravity forward modelling
is extended in this paper to the full gravity vector and ten-
sor expressed in the local north-oriented reference frame.
This is achieved by introducing three new groups of altitude-
dependent Molodensky’s truncation coefficients. These are
given by closed-form and infinite spectral relations that are
generalized for i) an arbitrary harmonic degree, ii) an ar-
bitrary topography power, iii) an arbitrary radial derivative,
iv) any radius larger than the radius of the reference sphere,
and v) for both near- and far-zone gravity effects. Thanks
to the generalization for an arbitrary radial derivative, the
cap-modified technique can efficiently be combined with the
gradient approach for harmonic synthesis on irregular sur-
faces. In a numerical study, we exemplarily apply the new
technique by forward modelling Earth’s degree-2159 topog-
raphy up to degree 21,590, employing 30 topography pow-
ers. The experiment shows that near- and far-zone gravity
effects can be synthesized on the topography with an ac-
curacy (RMS) of 0.005 – 0.03 m2 s−2 (potential), 0.8 –
20 µGal (gravity vector) and 0.1 mE – 1 E (gravity tensor).
The numerical experiment also shows that the divergence ef-
fect of spherical harmonics comes into play around degree
10,795 when evaluating the series on the Earth’s surface.

Blažej Bucha
Department of Theoretical Geodesy, Slovak University of Technology
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1 Introduction

Spectral gravity forward modelling (e.g., Rummel et al, 1988;
Martinec and Pěč, 1989; Balmino, 1994; Wieczorek and Phillips,
1998; Hirt and Kuhn, 2014) is a technique to deliver the
gravitational field induced by a topographic mass distribu-
tion using spherical (or other) harmonics. Its recent applica-
tions include computations of Bouguer anomalies (Balmino
et al, 2012; Hirt et al, 2016), quasigeoid-to-geoid separation
(Tenzer et al, 2016), studying the gravity effect due to the
Earth’s flattening (Wang and Yang, 2013; Rexer et al, 2016),
investigation of the convergence/divergence behaviour of spher-
ical harmonics on planetary surfaces (Hirt et al, 2016; Hirt
and Kuhn, 2017; Bucha et al, 2019b) or the exploration and
mitigation of the harmonic correction issue and the spec-
tral filter problem of residual terrain modelling (RTM, Rexer
et al, 2018; Hirt et al, 2019).

Common to these studies is that they forward model to-
pographic masses over the entire globe (global integration).
While this is required by potential theory in most instances,
practical evaluations may necessitate a restriction of the in-
tegration domain, for instance, to masses inside/outside a
spherical cap centred at the evaluation point. The resulting
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cap integration then delivers near- or far-zone gravity ef-
fects, respectively. Perhaps most frequently, the restriction
is done in order to lower the computational burden associ-
ated with the evaluation of the Newton integral in the spatial
domain. To enable the inside- and outside-cap integration
also for the spectral domain, Bucha et al (2019a) modified
spectral gravity forward modelling by introducing Moloden-
sky’s truncation coefficients (Molodensky et al, 1962). In
this paper, this technique is denoted as cap-modified spec-
tral gravity forward modelling or simply as cap-modified
spectral technique. Currently, it enables the computation of
an arbitrary radial derivative of the gravitational potential at
any point above the field-generating masses, provided that
the spherical harmonic series converges which holds true
at least at points above the limit sphere encompassing all
gravitating masses (the sphere of convergence; e.g., Hotine
1969).

The cap-modified spectral technique is particularly suited
when a specific spectral band of near- and/or far-zone grav-
ity effects is sought. A prominent example is the RTM tech-
nique, in which gravity effects due to the reference (smooth)
topography need to be band-limited in the spectral domain
and at the same time spatially restricted to inside-cap masses
(cf. Bucha et al, 2019a). Other applications include an ef-
ficient development of high-resolution global gravity maps
or investigations of the near- and/or far-zone gravity spectra
(ibid.).

In this paper, we extend the cap-modified spectral tech-
nique to the full gravity vector and tensor expressed in the
local north-oriented reference frame (LNOF). In addition,
we also provide means to evaluate an arbitrary radial deriva-
tive of these quantities, thereby enabling to compute, for
instance, 6 out of 10 components of the third-order gravi-
tational tensor (after considering its symmetry). The present
study thus extends cap-modified spectral gravity forward mod-
elling to the large palette of commonly used gravity field
quantities such as the height anomalies, the gravity, the de-
flections of the vertical or the gravity tensor.

In a numerical case study, we apply the new technique to
gravity effects implied by the Earth’s degree-2159 topogra-
phy and validate the results against an independent spatial-
domain Newtonian integration that provides accurate refer-
ence values. In particular, we model 10 quantities: the grav-
itational potential, the three elements of the gravitational
vector and the six elements of the gravitational tensor. All
of them are evaluated up to degree 21,590 relying on 30
powers of the topography. As an additional outcome of the
experiment, these rather advanced settings allow us to pro-
vide further insights into the divergence effect of spherical
harmonics on planetary surfaces (e.g., Jekeli, 1981, 1983;
Moritz, 1980; Hu and Jekeli, 2015; Hirt et al, 2016; Hirt and
Kuhn, 2017; Rexer, 2017; Bucha et al, 2019b; Chen et al,
2019).

The paper is organized as follows. After a brief recapit-
ulation of the basic principles of global and cap-modified
spectral gravity forward modelling in Section 2, we proceed
with extending the cap-modified technique up to the second-
order derivatives of the gravitational potential in Section 3.
The derivations (Appendices A to C) are then validated in
Section 4 in a controlled environment using synthetic grav-
ity field implied by the Earth’s degree-2159 topography. In
Section 5, we summarize the main conclusions of the pa-
per and discuss topics that may be relevant to future investi-
gations. The full statistical information from our validation
experiments and selected visualisations are provided in the
Electronic Supplementary Materials (ESM) to this paper.

2 Global and cap-modified spectral gravity forward
modelling

Let the shape of the gravitating topographic masses be given
by topographic heights Ĥ measured in the radial direction
from a reference sphere Ω having the radius R (spherical ar-
rangement of the topographic masses). Next, the topographic
heights Ĥ are transformed into a dimensionless topographic
height function

H(ϕ,λ ) =
Ĥ(ϕ,λ )

R
, (1)

which can be approximated by a finite surface spherical har-
monic expansion

H(ϕ,λ ) =
nmax

∑
n=0

n

∑
m=−n

H̄nm Ȳnm(ϕ,λ ) . (2)

Here, (ϕ,λ ) are the spherical latitude and longitude, respec-
tively, Ȳnm(ϕ,λ ) are the fully normalized spherical harmonic
functions of degree n and order m (e.g., Heiskanen and Moritz,
1967), H̄nm are the spherical harmonic coefficients of the to-
pographic height function and nmax is the maximum degree
of the expansion.

Assuming a constant mass density ρ , spectral gravity
forward modelling approximates the implied gravitational
potential V by a solid spherical harmonic expansion of the
form (e.g., Balmino, 1994; Wieczorek and Phillips, 1998)

V (r,ϕ,λ ) = 2π Gρ R2
pmax

∑
p=1

p×nmax

∑
n=0

Snp(r)

×
n

∑
m=−n

H̄nmp Ȳnm(ϕ,λ ) ,

(3)

where r is the spherical radius of the evaluation point, G is
the gravitational constant, p is the integer power of the to-
pography, H̄nmp are the fully normalized spherical harmonic
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coefficients of the pth power of the topographic height func-
tion,

H p(ϕ,λ ) =

(
Ĥ(ϕ,λ )

R

)p

=
p×nmax

∑
n=0

n

∑
m=−n

H̄nmp Ȳnm(ϕ,λ ) ,

(4)

and, finally, the term Snp(r) is given as

Snp(r) =
2

2n+1

p
∏
i=1

(n+4− i)

p!(n+3)

(
R
r

)n+1

. (5)

For the explanation of the maximum degree p×nmax in Eq. (4),
see, for instance, Freeden and Schneider (1998), Hirt and
Kuhn (2014) or Bucha et al (2019a). Note that both nmax
and pmax are generally infinite in case of real-world objects,
but are truncated here for practical reasons. The convergence
of the infinite series in Eq. (3) is guaranteed for evalua-
tion points satisfying the condition r > max(R+ Ĥ(ϕ,λ )).
Otherwise, the infinite series may converge or diverge (e.g.,
Rummel et al, 1988; Wieczorek and Phillips, 1998; Balmino,
1994; Hirt and Kuhn, 2017; Bucha et al, 2019a,b).

The gravitational potential V from Eq. (3) is induced
by topographic masses all around the globe. To restrict the
integration from the whole sphere to a spherical cap, cap-
modified gravity forward modelling introduced by Bucha
et al (2019a) can be employed. With ψ0 being the spheri-
cal radius of the cap, this leads to

V j(r,ϕ,λ ) = 2π Gρ R2
pmax

∑
p=1

p×nmax

∑
n=0

Q j
np(r,ψ0)

×
n

∑
m=−n

H̄nmp Ȳnm(ϕ,λ ) ,

(6)

where the variable j = {‘In’, ‘Out’} denotes either near-zone
effects (inside-cap integration, j = ‘In’) or far-zone effects
(outside-cap integration, j = ‘Out’) and the symbol Q j

np(r,ψ0)

stands for Molodensky’s truncation coefficients, which are
defined in Appendix A of Bucha et al (2019a). For the nu-
merical evaluation of the Q j

np(r,ψ0) coefficients and their
radial derivatives, either infinite spectral relations or recur-
rence relations with a fixed number of terms can be used (cf.
Appendices B, C and D of Bucha et al, 2019a). Needless to
say, it holds that

V In(r,ϕ,λ )+V Out(r,ϕ,λ ) =V (r,ϕ,λ ) . (7)

3 Extension of cap-modified spectral gravity forward
modelling up to the second-order potential derivatives
in LNOF

Throughout the paper, the directional derivatives of the grav-
itational potential are expressed in LNOF, which is a right-
handed orthogonal coordinate system, whose origin is at the

evaluation point P(r,ϕ,λ ) and its axes are defined as fol-
lows: the x-axis points to the north, the y-axis points to the
west and the z-axis points radially outwards.

3.1 First-order potential derivatives in LNOF

Applying the gradient operator expressed in LNOF to Eq. (6),
the gravitational vector induced by the near- and far-zone to-
pographic masses is given as (Appendix A)

g j(r,ϕ,λ ) = ∇V j(r,ϕ,λ ) =

V x, j(r,ϕ,λ )
V y, j(r,ϕ,λ )
V z, j(r,ϕ,λ )

 , (8)

where

V x, j(r,ϕ,λ ) = −2π Gρ R2
pmax

∑
p=1

p×nmax

∑
n=1

Q1,1, j
np (r,ψ0)

×
n

∑
m=−n

H̄nmp
∂Ȳnm(ϕ,λ )

∂ϕ
,

(9)

V y, j(r,ϕ,λ ) =
2π Gρ R2

cosϕ

pmax

∑
p=1

p×nmax

∑
n=1

Q1,1, j
np (r,ψ0)

×
n

∑
m=−n

H̄nmp
∂Ȳnm(ϕ,λ )

∂λ

(10)

and

V z, j(r,ϕ,λ ) = 2π Gρ R2
pmax

∑
p=1

p×nmax

∑
n=0

Q1,0, j
np (r,ψ0)

×
n

∑
m=−n

H̄nmp Ȳnm(ϕ,λ ) .

(11)

The newly introduced truncation coefficients, Q1,0, j
np (r,ψ0)

and Q1,1, j
np (r,ψ0), are defined in Eqs. (45) and (54) of Ap-

pendix A. The first superscript next to Q (here 1) indicates
that the truncation coefficients relate to the first-order deriva-
tives of the topographic potential and the second superscript
(here either 0 or 1) stands for the order of the derivative with
respect to the spherical distance ψ (cf. Eq. 38). The practical
evaluation of these coefficients via infinite series and closed
relations is discussed in Appendices A.1 and A.2, respec-
tively. From (59) and (60), it follows that Q1,0, j

np (r,ψ0) and
Q1,1, j

np (r,ψ0) are related to Q j
np(r,ψ0) from Eq. (6). Worth

noting is that two types of truncation coefficients are used
to compute three elements the gravitational vector. Finally,
Eqs. (9) and (10) are singular at the poles. As a remedy, the
strategy by, for instance, Petrovskaya and Vershkov (2006)
could be investigated to avoid the issue.
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3.2 Second-order potential derivatives in LNOF

Continuing the differentiation in LNOF, the near- and far-
zone effects on the gravitational tensor read (Appendix B)

V j(r,ϕ,λ ) = ∇⊗∇V j(r,ϕ,λ )

=

V xx, j(r,ϕ,λ ) V xy, j(r,ϕ,λ ) V xz, j(r,ϕ,λ )
V yx, j(r,ϕ,λ ) V yy, j(r,ϕ,λ ) V yz, j(r,ϕ,λ )
V zx, j(r,ϕ,λ ) V zy, j(r,ϕ,λ ) V zz, j(r,ϕ,λ )

 ,

(12)

where

V xx, j(r,ϕ,λ ) =V xx, j
1 (r,ϕ,λ )+V xx, j

2 (r,ϕ,λ )

+V xx, j
3 (r,ϕ,λ ) ,

(13)

V xx, j
1 (r,ϕ,λ ) = −π Gρ R2

pmax

∑
p=1

p×nmax

∑
n=0

Q2,0, j
np (r,ψ0)

×
n

∑
m=−n

H̄nmp Ȳnm(ϕ,λ ) ,

(14)

V xx, j
2 (r,ϕ,λ ) = 2π Gρ R2

pmax

∑
p=1

p×nmax

∑
n=2

n(n+1)Q2,2, j
np (r,ψ0)

×
n

∑
m=−n

H̄nmp Ȳnm(ϕ,λ ) ,

(15)

V xx, j
3 (r,ϕ,λ ) = 4π Gρ R2

pmax

∑
p=1

p×nmax

∑
n=2

Q2,2, j
np (r,ψ0)

×
n

∑
m=−n

H̄nmp
∂ 2Ȳnm(ϕ,λ )

∂ϕ2 ,

(16)

V xy, j(r,ϕ,λ ) =V xy, j
1 (r,ϕ,λ )+V xy, j

2 (r,ϕ,λ ) , (17)

V xy, j
1 (r,ϕ,λ ) = − 4π Gρ R2

cosϕ
tanϕ

pmax

∑
p=1

p×nmax

∑
n=2

Q2,2, j
np (r,ψ0)

×
n

∑
m=−n

H̄nmp
∂Ȳnm(ϕ,λ )

∂λ
,

(18)

V xy, j
2 (r,ϕ,λ ) = − 4π Gρ R2

cosϕ

pmax

∑
p=1

p×nmax

∑
n=2

Q2,2, j
np (r,ψ0)

×
n

∑
m=−n

H̄nmp
∂ 2Ȳnm(ϕ,λ )

∂λ ∂ϕ
,

(19)

V xz, j(r,ϕ,λ ) = 2π Gρ R2
pmax

∑
p=1

p×nmax

∑
n=1

Q2,1, j
np (r,ψ0)

×
n

∑
m=−n

H̄nmp
Ȳnm(ϕ,λ )

∂ϕ
,

(20)

V yy, j(r,ϕ,λ ) =V xx, j
1 (r,ϕ,λ )−V xx, j

2 (r,ϕ,λ )

−V xx, j
3 (r,ϕ,λ ) ,

(21)

V yz, j(r,ϕ,λ ) = − 2π Gρ R2

cosϕ

pmax

∑
p=1

p×nmax

∑
n=1

Q2,1, j
np (r,ψ0)

×
n

∑
m=−n

H̄nmp
∂Ȳnm(ϕ,λ )

∂λ
,

(22)

V zz, j(r,ϕ,λ ) =−2V xx, j
1 (r,ϕ,λ ) . (23)

Since the gravitational tensor is symmetric, it holds that
V xy(r,ϕ,λ ) = V yx(r,ϕ,λ ), etc. The truncation coefficients
Q2,0, j

np (r,ψ0), Q2,1, j
np (r,ψ0) and Q2,2, j

np (r,ψ0) are defined in Eqs. (78)
and (85) and formulae suitable for their practical evaluation
are discussed in Appendices B.1 and B.2. Note that only
three groups of truncation coefficients enters the evaluation
of six unique elements of the gravitational tensor. Similarly
as in the previous section, these truncation coefficients are
related to Q j

np(r,ψ0) via Eqs. (90), (91) and (92), and singu-
lar expressions occur as well (Eqs. 16, 18, 19, 20, 22).

3.3 Efficient spherical harmonic synthesis at grids residing
on the irregular Earth’s surface

From the numerical point of view, Eqs. (6), (8) and (12)
are computationally intensive to evaluate at densely spaced
grids that refer to an irregular surface (e.g., the Earth’s to-
pography as in this study). This is caused by the altitude-
dependency of the truncation coefficients, implying that dif-
ferent coefficients are needed for points with different ele-
vations. When further combined with the numerical issues
associated with the evaluation of Q j

np(r,ψ0) (cf. Bucha et al,
2019a) as well as with ultra-high-degree spherical harmonic
expansions (say, beyond degree 10,800), the direct point-
wise evaluation does not appear to be currently possible (even
in case of a few hundreds of computation points).

To overcome these difficulties, Bucha et al (2019a) pro-
posed to apply the gradient approach for spherical harmonic
synthesis at regular grids residing on irregular surfaces (Holmes,
2003; Balmino et al, 2012; Hirt, 2012). This technique relies
on i) an analytical upward/downward continuation from a
regular surface to the irregular surface using a Taylor series
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and ii) numerically efficient FFT-based algorithms for spher-
ical harmonic synthesis on the regular surface (e.g., sphere
or ellipsoid of revolution). In the case of cap-modified spec-
tral modelling, this means that some tens of successive radial
derivatives of Eqs. (6), (8) and (12) need to be evaluated for
the continuation process (cf. Eqs. 9 and 10 of Bucha et al
2019a). Since the truncation coefficients are the only radius-
dependent terms in these relations, we provide in Appen-
dices A and B formulae for an arbitrary radial derivative of
all the truncation coefficients from Eqs. (9) – (23). More
specifically, we provide spectral relations (Sections A.3 and
B.3) and closed relations with a fixed number of terms (A.4
and B.4) for near- and far-zone effects and i) an arbitrary
radius r, ii) an arbitrary harmonic degree n, iii) an arbitrary
topography power p and iv) an arbitrary order of the radial
derivative k. For the sake of brevity, the formulae resulting
from the application of the gradient approach to Eqs. (6) –
(23) are omitted here, but can readily be obtained analo-
gously to Eqs. (9) and (10) of Bucha et al (2019a).

Finally, Eqs. (6) – (23) can be rewritten such that only a
single spherical harmonic synthesis is needed for their eval-
uation instead of repeating it pmax times, each time with a
different maximum degree p× nmax. Taking Eq. (6) as an
example, all these relations can be rewritten into a single
spherical harmonic synthesis,

V j(r,ϕ,λ ) = 2π Gρ R2
N

∑
n=0

n

∑
m=−n

V̄ j
nm(r,ψ0)Ȳnm(ϕ,λ ) , (24)

where N is the maximum degree of the synthesis, say, N =

pmax×nmax, and the coefficients V̄ j
nm(r,ψ0) can be prepared

prior to the synthesis via

V̄ j
nm(r,ψ0) =

pmax

∑
p=1

Q j
np(r,ψ0) H̄nmp , (25)

after realizing that (cf. Eq. 53)

H̄nmp = 0 for n > p×nmax . (26)

Furthermore, when combining Eq. (24) with the gradient ap-
proach, we found it efficient to compute the V̄ j

nm(r,ψ0) coef-
ficients together with their radial derivatives (necessary for
the continuation process) beforehand and store all of them in
RAM during the entire synthesis. Although this may require
several tens of GBs of RAM, which is certainly true for the
synthesis up to degree 21,590 as in our numerical study (cf.
Section 4), the gain in computational efficiency may easily
outperform costs associated with that amount of RAM. In
other words, the time-consuming evaluation of ultra-high-
degree fully-normalized Legendre functions needs to be per-
formed only once per synthesis which is a substantial com-
putational acceleration in case of high values of nmax, pmax
and N, say, nmax = 2159, pmax = 30 and N = 21,590 as in
our numerical study.

4 Numerical experiments

4.1 Truncation coefficients

In this section, we numerically examine the three newly de-
rived groups of truncation coefficients: Q1,1, j

np (r,ψ0), Q2,1, j
np (r,ψ0)

and Q2,2, j
np (r,ψ0). The coefficients Q j

np(r,ψ0) and their higher-
order radial derivatives (hence, including Q1,0, j

np (r,ψ0), Q2,0, j
np (r,ψ0),

cf. Eqs. 59 and 90, respectively) were discussed in detail in
Bucha et al (2019a). In this experiment, we designed pa-
rameters of the truncation coefficients such that a high ac-
curacy level could be achieved later in the validation of the
cap-modified spectral technique (Section 4.2). By high ac-
curacy, we mean ∼0.001 m2 s−2, ∼µGal and ∼E for the
gravitational potential and the components of the gravita-
tional vector and tensor, respectively. The following input
parameters are studied here:

• n = 0, . . . ,21600 (spherical harmonic degree),
• p = 1, . . . ,30 (topography power),
• k = 0, . . . ,40 (order of the radial derivative),
• j = {‘In’, ‘Out’} (inside- and outside-cap integration),
• R = 6,378.137 km (radius of the reference sphere),
• r = 6,378.137 km+7 km (radius of the evaluation sphere

to be used as an auxiliary sphere in the gradient ap-
proach),
• ψ0 = 100 km/R≈ 0.90◦ (integration radius).

Note that the evaluation radius r is chosen such that the
evaluation sphere passes above all the gravitating masses.
This is done in order to avoid possible issues with the slow
convergence of the gradient approach in Section 4.2 (see
Appendix B of Bucha et al, 2019b). The integration radius
ψ0, separating the inside- and outside-cap masses, is chosen
as 100 km which seems to be a reasonable choice, for in-
stance, for future RTM applications that utilize topography
expanded to degree ∼2159.

For the numerical evaluation of Q1,1, j
np (r,ψ0), Q2,1, j

np (r,ψ0)

and Q2,2, j
np (r,ψ0), we rely in this work on the closed relations

from Appendices A.2, A.4, B.2 and B.4 (Eqs. 66, 98 and 99).
This because once the coefficients Q j

np(r,ψ0) from Eq. (6)
and their radial derivatives are computed, which is perhaps
the most difficult part discussed in Bucha et al (2019a), the
truncation coefficients introduced in this paper (Q1,1, j

np (r,ψ0),
Q2,1, j

np (r,ψ0) and Q2,2, j
np (r,ψ0)) and their radial derivatives

can be obtained without any substantial difficulties. Opposed
to this, the spectral relations from Appendices A.1, A.3, B.1
and B.3 are here considered as more time-consuming, as
they involve i) infinite sums that need to be truncated at
ultra-high degrees (e.g., 100,000 in the study of Bucha et al,
2019a) and ii) integrals of products of two ultra-high-degree
Legendre functions over a restricted domain.

Following Bucha et al (2019a), we evaluate the Q j
np(r,ψ0)

coefficients and their radial derivatives through recurrence
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relations (cf. Bucha et al, 2019a) with 256 significant dig-
its. This rather large number of digits is employed in or-
der to mitigate numerical inaccuracies that are associated
with the recurrence relations to evaluate the truncation co-
efficients (ibid.). The computation was conduced in Mat-
lab (www.mathworks.com) using the ADVANPIX toolbox
(www.advanpix.com), the latter of which enables to extend
the number of significant digits.

Having the Q j
np(r,ψ0) coefficients and their radial deriva-

tives, we evaluated the coefficients Q1,1, j
np (r,ψ0), Q2,1, j

np (r,ψ0)

and Q2,2, j
np (r,ψ0) and their radial derivatives. The entire com-

putation was performed using 256 significant digits and was
followed by an indirect accuracy check based on Appendix C.
Using 256 significant digits, the validation revealed that the
worst agreements for the left-hand and the right-hand sides
of Eqs. (107), (108) and (109) were, respectively, 28, 24 and
28 correct digits for the studied values of n, p, k, R, r and
ψ0 (see the first paragraph of this section). To this end, we
utilized the measure

δA =

∣∣∣∣∣A−Areference

Areference

∣∣∣∣∣ , (27)

where Areference represents the right-hand side of Eqs. (107),
(108) and (109) and A stands for the left-hand sides of the
same equations.

After this, the truncation coefficients were converted into
double precision, ensuring an excellent accuracy down to the
15th or 16th digit.

Fig. 1, showing the dependence of Q1,1, j
np (r,ψ0), Q2,1, j

np (r,ψ0)

and Q2,2, j
np (r,ψ0) on harmonic degree n and topography power

p, indicates some important properties of near-zone coeffi-
cients (left panels in Fig. 1).

• The magnitude of the truncation coefficients grows with
increasing p (cf. the normalization factors in the sub-
plots of Fig. 1). This could be somewhat anticipated based
on the previous experiments with Q j

np(r,ψ0) and their
high-order radial derivatives (Bucha et al, 2019a).

• Contrary to Bucha et al (2019a), where the QIn
np(r,ψ0)

coefficients exhibit a single-wave pattern for p ≥ 2, the
curves for the near-zone coefficients Q1,1,In

np (r,ψ0), Q2,1,In
np (r,ψ0)

and Q2,2,In
np (r,ψ0) show multiple short-wavelength waves

after, say p≈ 12.
• Beyond p≈ 12, the near-zone coefficients of lower har-

monic degrees are of higher magnitudes and dominate
over high-degree coefficients (in a relative sense).

• Within the same type of near-zone coefficients, very sim-
ilar curves are seen beyond power p ≈ 12 (up to their
signs and the normalization factors, which change sub-
stantially).

These observations imply that the near-zone gravity effects
will feature strong spatial variations and high maximum de-

grees will be needed in Section 4.2 for their accurate evalu-
ation.

On the other hand, far-zone coefficients (the right panels
in Fig. 1)

• show a much reduced variation with respect to harmonic
degree (note the different horizontal axes for left and
right panels in Fig. 1),
• take the largest values (in a relative sense) in low spectral

bands, and
• similarly as the near-zone coefficients, grow in magni-

tude as the topography power p increases (cf. the nor-
malization factors).

Translated into gravity effects, the first and the second items
confirm the known fact that the far-zone gravity effects are
mostly of long-wavelength character, and thus can be accu-
rately evaluated with much lower maximum harmonic de-
grees, provided that ψ0 is large enough.

In Fig. 2, we show the newly derived truncation coeffi-
cients for a fixed topography power p = 1 and varying order
of the radial derivative k. It reveals that the maximum magni-
tude of the near-zone coefficients moves towards higher har-
monic degrees as the order of the derivative grows. Opposed
to this, the far-zone coefficients and their radial derivatives
take the largest values in the lower part of the spectrum (say,
up to degree 400).

4.1.1 Errors of the indirect check performed in double
precision

Despite the high accuracy achieved in the computation of
the truncation coefficients in the previous section (∼15 – 16
digits after conversion into double precision), a catastrophic
cancellation may be encountered when evaluating the left-
hand side of Eqs. (104), (105), (107), (108), (109) in double
precision. Fig. 3 shows that the sum of near- and far-zone co-
efficients in double precision may not necessarily yield the
correct value, even when the coefficients are accurate down
to the 16th digit. This is because for some specific combi-
nations of n, p and k, the near- and far-zone coefficients are
equal up to many digits (even up to the 16th and beyond)
but are of opposite signs. As a result, summing them in dou-
ble precision may produce, for instance, zero output values,
which is apparently an incorrect result when considering the
right-hand side of these equations. Taking Q2,2, j

np (r,ψ0) and
p = 20 from Fig. 3 as an example, this procedure yields zero
correct digits up to harmonic degree ∼2500, after which the
accuracy improves. For p= 30, the catastrophic cancellation
is observed over the entire studied interval of harmonic de-
grees (0 - 21,600). These errors then massively deteriorate
the accuracy of spherical harmonic synthesis, in which the
coefficients are involved. In our numerical study from Sec-
tion 4.2, prone to these issues are especially the newly de-
rived truncation coefficients Q1,1, j

np (r,ψ0), Q2,1, j
np (r,ψ0) and
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Fig. 1 Normalized truncation coefficients Q1,1, j
np (r,ψ0) (upper row), Q2,1, j

np (r,ψ0) (middle row) and Q2,2, j
np (r,ψ0) (bottom row) evaluated for R =

6,378,137 m, r = 6,378,137 m+ 7000 m, ψ0 = 100 km/R, fixed k = 0 and varying p as a function of the harmonic degree. For visualization
purposes, the coefficients are normalized by the maximum of their absolute value from the depicted interval. The ranges of the normalization
factors are shown in the plots. Note that the curves representing the near-zone coefficients are overlapped at this scale for p beyond, say, 12. Also
note that the far-zone coefficients are depicted only up to degree 1000, because they show much reduced variation. The values were prepared in
Matlab with 256 digits using the ADVANPIX toolbox

Q2,2, j
np (r,ψ0), implying that a decreased numerical accuracy

can be expected for V x, j, V y, j, V xx, j, V xy, j, V xz, j, V yy, j, V yz, j

when n, p and k exceed some critical values, which will be
determined in the next section.

To overcome this, extended number of significant dig-
its could be employed also in the entire synthesis in cap-
modified spectral gravity forward modelling. However, for
our multiple ultra-high-degree expansions from Sections 2
and 3, spherical harmonic synthesis at millions of points
with, say, 256 digits is far beyond our current computational

capabilities. An alternative approach would be to derive nu-
merically more efficient formulae, but this is left for future
work.

In the numerical experiments presented in the next sec-
tion, we therefore study the effect of the maximum topog-
raphy power on the final results by using various values of
pmax (5, 10, 15, 20 and 30) and N (nmax, 2 nmax, . . . , 10 nmax
with nmax = 2159) (cf. Eq. 24). In all computations, the trun-
cation coefficients are stored in double precision (16 digits)
and the entire cap-modified spectral gravity forward mod-
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Fig. 2 The same as Fig. 1, but for a fixed p = 1 and varying k

elling, that is, the spherical harmonic analysis and the syn-
thesis, are performed in double precision.

4.2 Validation of cap-modified spectral forward modelling
using the Earth’s degree-2159 topography

To check the correctness of the newly derived equations from
Section 3 and Appendices A and B, we designed a numer-
ical test, in which cap-modified spectral modelling is vali-
dated against an independent spatial-domain Newtonian in-
tegration as a reference. In the experiment, the gravity field
is implied by RET2014 (Hirt and Rexer, 2015), which is a
model of the Earth’s topography based on a surface spherical
harmonic expansion up to degree 10,800. The abbreviation

RET stands for the rock-equivalent topography and means
that several mass layers with different densities (here, rock,
water and ice) were condensed into a single layer equivalent
to topographic rock, here with the density ρ = 2670 kg m−3.
For our study, the topography was synthesized up to de-
gree nmax = 2159, which approximately corresponds to the
5 arc-min resolution of global gravity field models such as
EGM2008 (Pavlis et al, 2012). The implied gravity field is
here modelled up to degree N = 21,590 (cf. Eq. 24), being
the tenth multiple of the topography bandwidth, while em-
ploying up to 30 powers of the input topography (pmax =

30). This is necessary, because a band-limited topography
generates a full-banded gravity field (e.g., Balmino, 1994;
Balmino et al, 2012; Hirt and Kuhn, 2014).
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Fig. 3 Indirect check (in double precision) on the numerical accuracy
of Q2,2, j

np (r,ψ0) (Eqs. 27 and 109) for k = 0 and varying harmonic de-
gree n and topography power p. Contrary to the tests from Section 4.1,
here the two terms on the left-hand and the entire right-hand side of
Eq. (109) were evaluated with 256 significant digits (accurate up to 28
or more digits) but then each term was separately converted into dou-
ble precision. After the conversion, the near- and far-zone coefficients
were summed in double precision and Eq. (27) was used to compute
δA. The base-10 logarithm of δA is shown in the plot. The values of
−16 represent the maximum 16-digit accuracy, while 0 and larger val-
ues indicate zero accurate digits

Importantly, the settings of the experiment allow us not
only to verify the correctness of the equations from Sec-
tion 3, but also to study the divergence effect of cap-modified
spherical harmonic series. While global spectral gravity for-
ward modelling from Section 2 has already been examined
for the divergence effect (Hirt et al, 2016; Hirt and Kuhn,
2017; Rexer, 2017), showing its presence for the Earth and
Moon when the maximum degree of the spherical harmonic
series is large enough, this is the first experiment of its kind
for cap-modified spectral modelling.

Spatially, the validation is performed with near-global
coverage (within the [−80◦,80◦] latitude range) for near-
zone gravity effects and, out of necessity, only regionally
for the far-zone effects. The latter is done because compu-
tational demands associated with delivering reference val-
ues via spatial-domain Newtonian integration are enormous
when working on a global scale with such high resolutions
as in this study. Nevertheless, we evaluated the far-zone ef-
fects over two challenging computational areas of the Hi-
malayas (latitude: [20.05◦,44.96◦], longitude: [70.04◦,104.96◦])
and Kiribati ([−4.95◦,4.96◦], [185.04◦,199.96◦]), which can
reasonably well serve as a benchmark for the prediction over
the entire Earth’s surface as long as the values of nmax, pmax
and N are similar to ours. These regions were selected, be-

cause they seem to be the most prone to the divergence effect
as shown in Hirt et al (2016).

The validation is performed at points arranged in a 5 arc-
min equiangular grid which approximately corresponds to
the spatial resolution of the degree-2159 topography. The
points are distributed globally, excluding 10◦ polar caps (near-
global validation). The radial component of their position is
twofold,

• either 1 m above the RET2014 topography H if H > 0 m
or 1 m above the reference sphere R = 6,378.137 km if
H ≤ 0 m, briefly referred to as 1 m above the Earth’s
surface (Sections 4.2.3 and 4.2.4), and
• on a Brillouin sphere with the radius R= 6,378.137 km+

7 km (a sphere being completely outside the masses,
Sansò and Sideris, 2013) (Section 4.2.5).

The former set-up enables to identify the divergence effect if
present. The latter case, being free of this error by definition,
allows us to discriminate a possible divergence effect from
errors associated with the evaluation of the truncation coef-
ficients (Section 4.1.1). Note that our spatial-domain New-
tonian integration software (Section 4.2.1) is free of the di-
vergence of spherical harmonics and is capable of delivering
gravity effects within our target accuracy (cf. Section 4.1) as
indirectly shown in Sections 4.2.3, 4.2.5 and 4.2.4. Beyond
doubts, the reference values can therefore serve as a bench-
mark for identifying the divergence effect, similarly as in
Hirt et al (2016) or Hirt and Kuhn (2017).

4.2.1 Spatial-domain Newtonian integration

To obtain the reference gravity values, we use spatial-domain
Newtonian integration software (cf. Bucha et al, 2016) that
combines i) the polyhedron-based routine developed by Tsoulis
(2012) and ii) tesseroids (Grombein et al, 2013). The inte-
gration radius ψ0 was set to a spherical distance of 100 km/

6,378.137 km≈ 0.90◦.
Near-zone gravity effects. For accurate gravity forward

modelling, the integration domain (0◦ ≤ ψ ≤ ψ0) is subdi-
vided into an inner zone (ψ ≤ 0.25◦), where we rely on poly-
hedral modelling, and an outer zone (0.25◦ < ψ ≤ ψ0), be-
ing modelled by tesseroids (note that in our case the singu-
larity of the integral kernels of tesseroids does not cause any
deterioration that would be larger than our target accuracy
specified in Section 4.1, see also Section 4.3.4 of Bucha et al,
2016). Generally, polyhedral gravity forward modelling is
slower but more accurate than the tesseroid-based one (e.g.,
Bucha et al, 2016), so is here used to forward model the cru-
cial innermost masses, and vice versa. The radius of 0.25◦

that separates the two zones was empirically found to be
a reasonable compromise between the accuracy and com-
putational costs. The RET2014 topography was synthesized
globally at the spatial resolution of 10 arc-sec, thus with an
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oversampling factor of ∼30. This grid represents the shape
of the topographic masses that were subsequently forward
modelled using our Newtonian integration software.

The statistics of the 10 obtained forward modelled quan-
tities (V In, V x,In, V y,In, V z,In, V xx,In, V xy,In, V xz,In, V yy,In,
V yz,In, V zz,In) are reported in Table 1. For the sake of brevity,
shown in Fig. 4 is only V z,In, which was chosen as represen-
tative for visualization purposes, given that it is closely re-
lated to the widely used gravity anomalies and disturbances.
Note that while the near-zone effects are shown in Fig. 4
over two areas only, the Himalayas and Kiribati, they were
computed near-globally within the [−80◦,80◦] latitude limit
as already discussed. A complete picture of the near-zone
reference gravity effects is provided in Figs. S1 – S4 of
ESM.

Far-zone gravity effects. In case of far-zone effects, tesseroids
are used over the entire integration domain (ψ0≤ψ ≤ 180◦).
This is permissible, given the attenuation of gravity signal
with increasing distance from the evaluation point. To de-
crease computation time, the resolution of the forward mod-
elled RET2014 topography is here lowered from 10 arc-sec
to 30 arc-sec (oversampling factor of 10) and forward mod-
elling is restricted to two areas, the Himalayas and Kiribati
(see Fig. 5 and Table 1). Nevertheless these areas represent
a worst-case scenario and are certainly challenging for ac-
curate gravity forward modelling both in the spatial and the
spectral domain. The reference far-zone gravity effects are
shown for each functional in Figs. S5 – S8 of ESM.

4.2.2 Cap-modified spectral gravity forward modelling

Next, we performed cap-modified spectral gravity forward
modelling (Eqs. 6 – 23) on the Earth’s topography via the
gradient approach (Section 3.3). For the analytical continua-
tion in the gradient approach, we use the radius 6,378,137 m+

7000 m (a sphere outside of all masses) and the Taylor series
truncated at kmax = 40 (cf. Eq. 9 of Bucha et al, 2019a). The
maximum topography integer power is gradually set up to
pmax = 30. The maximum harmonic degree N (cf. Eq. 24)
of the gravity effects varies from nmax to 10nmax, where
nmax = 2159. The truncation coefficients were evaluated us-
ing 256 significant digits, then they were converted to double
precision (cf. Section 4.1) and, finally, the entire harmonic
synthesis was conduced in double precision.

Before the validation itself, we show in Fig. 6 dimen-
sionless degree variances (cf. Eq. 15 of Bucha et al, 2019a)
of the total near- and far-zone gravity signal V z, j as well as
of the individual gravity contributions generated by the pth
power of the topography. The quantity V z, j was selected as
an example, as it is frequently employed in practice in the
form of gravity disturbances. Briefly, both near- and far-zone
effects possess an important portion of the signal even well
beyond the maximum degree of the topography (cf. Hirt and

Kuhn, 2014; Hirt et al, 2016; Hirt and Kuhn, 2017; Bucha
et al, 2019a). Similarly as in Bucha et al (2019a), the de-
gree variances of the far-zone gravity effects exhibit a strong
arch-like pattern, which is caused by the Molodensky’s trun-
cation coefficients. It is seen that the power of the near-zone
gravity signal is stronger and decays more slowly than its
far-zone counterpart which is consistent with the decay of
gravitational signal with distance form the source (near-zone
effects show generally more power in higher frequencies
than far-zone effects).

Note that after a certain degree, the curves in Fig. 6 start
to oscillate around the same level, e.g., ∼10−46 for near-
zone effects and p ≥ 6 (see also the spectrum of the far-
zone effects beyond degree ∼15,000 that is shown by the
thick black line). This is caused by numerical issues asso-
ciated with the growing range of the H̄nmp coefficients (cf.
Eq. 4) with increasing p. More specifically, Fig. 7 shows that
the algorithms for spherical harmonic synthesis and analysis
that we used (the Gauss–Legendre quadrature from Sneeuw
1994 combined with fully-normalized Legendre functions
evaluated after Fukushima 2012) were not able to capture
such a wide range of magnitudes in double precision. Fur-
ther examples with similar numerical issues can be seen in
Hirt et al (2016) or Bucha et al (2019a). As a potential rem-
edy, the whole computation process could be performed in
quadruple precision. This was successfully tested with a degree-
360 topography, but it is not used in the final computations
with the degree-2159 topography due to its significantly longer
computation time. We also tried to normalize the input sig-
nal by a single constant factor but without success. Never-
theless, these inferior coefficients can be ignored when the
magnitudes they produce are of negligible strengths in terms
of gravity (as it is in Fig. 6) or excluded when the numeri-
cal inaccuracies are amplified too much as would happen
for ultra-high harmonic degrees. Fig. 7 therefore shows that,
sooner or later, some different strategy may be required to
accurately recover the H̄nmp coefficients for high values of
n, m, nmax and p.

4.2.3 Near-zone gravity effects: validation 1 m above the
topography

In this validation, the near-zone gravity effects are computed
at a 5 arc-min equiangular grid with the radial position of
the evaluation points being either 1 m above the RET2014
topography H if H > 0 m or 1 m above the reference sphere
R = 6,378.137 km if H ≤ 0 m. The latter is done to avoid
computations inside the masses. In that case, our software
for the spatial-domain Newtonian integration would yield
(in agreement with potential theory) non-harmonic gravita-
tional potential and its derivatives, while the cap-modified
spectral technique, being based on a finite linear combina-
tion of harmonic functions (cf. Sections 2 and 3), gives nec-
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Fig. 4 Near-zone gravitational effects (mGal) implied by the Earth’s degree-2159 RET2014 topography in terms of V z,In (mGal) over the Hi-
malayas (left panel) and Kiribati (right panel). The computation points are defined by a 5 arc-min equiangular grid and reside 1 m above the
Earth’s topography (cf. Section 4.2.3). The values were obtained by a divergence-free spatial-domain Newtonian integration and will later serve
as a reference for the validation of cap-modified spectral gravity forward modelling. Note that the element V z,In represents the positive first-order
radial derivative of V In which is why its sign is opposite with respect to Bucha et al (2019a), who worked with the negative derivative known as
the gravity disturbance. The short-scale wavy-like features that can be seen in the left panel, especially around the Himalayas, are caused by the
oscillating nature of topography that is expanded in surface spherical harmonics
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Fig. 5 The same as Fig. 4, but with far-zone gravitational effects (mGal) on V z,In over the Himalayas (left panel) and Kiribati (right panel)

essarily a harmonic potential even inside the masses (an ana-
lytically downward continued external potential; e.g., Moritz
2010; Freeden and Gerhards 2013), where the true gravita-
tional potential is non-harmonic.

In Table S1 of ESM, we provide statistics of the vali-
dation (RMS of the discrepancies and the maximum of their
absolute values, here denoted as MAX). For each functional,
the obtained discrepancies are plotted in Figs. S9 and S10 of
ESM. In Fig. 8, we show the RMS values as a function of
the maximum harmonic degree N for various pmax. Several
conclusions can be drawn based on the validation.

• V In (requires Q j
np(r,ψ0)): Within our target accuracy

(∼0.001 m2 s−2), the cap-modified harmonic series for
the potential converges rather fast when compared with
the other quantities. This is not surprising, given that
the most significant portion of the gravitational poten-
tial signal is contained within its low harmonics, here
up to degree ∼2159. The best agreement achieved with
the least effort is RMS = 0.0053 m2 s−2 and MAX =

0.035 m2 s−2 and is reached with pmax = 15 and N =

8636. When translated into geoid undulations, a sub-
millimetre RMS accuracy could be achieved in geoid
computations. Note that a slightly worse but fairly com-
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Table 1 Characteristics of the near- and far-zone reference gravity effects obtained from the spatial-domain Newtonian integration of the degree-
2159 RET2014 topography. The computation points are placed 1 m above the Earth’s topography (Sections 4.2.3 and 4.2.4). Note that while the
statistics for the near-zone effects are based on near-global datasets (5 arc-min equiangular grid within the [−80◦,80◦] latitude limits; 1920×4320
nodes), the far-zone statistics are based on two much smaller areas, the Himalayas (300×420 nodes) plus Kiribati (120×180 nodes), representing
∼1.8 % of grid nodes of the former one. Therefore, the statistics for the far-zone effects likely do not provide a complete global picture of the
signals. The abbreviation STD stands for the standard deviation

Quantity Unit Near-zone effects Far-zone effects
Min Max Mean STD Min Max Mean STD

V m−2 s−2 −490.898 589.679 −139.061 176.223 −26273.726 −9819.973 −13835.625 5259.778
V x mGal −362.166 425.608 −0.356 25.157 −250.559 553.289 100.048 188.022
V y mGal −364.518 368.921 −4.201e−6 24.394 −364.448 272.190 −14.718 109.172
V z mGal −713.520 642.281 140.271 179.917 60.147 211.948 106.818 44.871
V xx E −338.470 287.899 7.386 16.628 −18.442 23.440 6.592 11.424
V xy E −183.657 160.344 3.569e−3 7.609 −9.174 9.586 −1.492e−2 2.010
V xz E −364.062 286.933 7.212e−2 15.679 −2.161 1.020 −0.235 0.445
V yy E −403.187 318.051 7.385 16.223 −18.765 29.584 6.680 12.637
V yz E −322.009 315.731 2.020e−4 15.391 −0.985 1.170 3.208e−2 0.261
V zz E −361.698 659.755 −14.771 28.776 −49.187 36.360 −13.271 23.692

Fig. 6 Dimensionless degree variances (cf. Eq. 15 of Bucha et al, 2019a) of near-zone (up to ψ0 ≈ 0.90◦) and far-zone (beyond ψ0 ≈ 0.90◦) gravity
effects (V z, j) shown as a function of integer power p of the Earth’s degree-2159 topography. The degree variances refer to a Brillouin sphere that
is outside of all masses with the radius R = 6,378.137 km+ 7 km (the maximum elevation from RET2014 is ∼6.7 km for nmax = 2159), where
spherical harmonic series converge. No divergence effect can therefore be seen in this figure as opposed to, for instance, Fig. 3.14 of Rexer (2017),
who employed global spectral gravity forward modelling (nmax = 2160, pmax = 50, N = 21,600) to provide degree variances referring to the
reference sphere that is partially inside the gravitating masses, where spherical harmonic series may converge or diverge

parable sub-millimetre RMS accuracy is seen already
with pmax = 5 and N = 4318 (RMS = 0.0054 m2 s−2),
but at the cost of a worse MAX value (0.280 m2 s−2). A
careful inspection of Fig. S9 of ESM, where the differ-
ences are plotted, reveals that divergence effect emerges
over the Himalayas. However, its magnitude is too low
to allow us draw reliable conclusions on the divergence
of spherical harmonics on the Earth’s surface. As can
be seen from Figs. S9 and S10, the divergence effect
also appears to be present in all other studied quanti-
ties, so this observation will not be repeated below. Two
exceptions that will be discussed are V z,In and V zz,In, for
which the magnitude of the divergence effect is suffi-
ciently large to formulate reliable conclusions.

• V x,In, V y,In (both require Q1,1, j
np (r,ψ0)): For the two quan-

tities, the lowest RMS errors obtained are 4.1 and 2.7 µGal
and were achieved with pmax = 10, N = 10,795 and N =

12,954, respectively. Beyond these values, a massive de-
terioration is seen, worsening the RMS errors gradually
up the order of∼1018 mGal (cf. Table S1 of ESM). How-
ever, this is not caused by the divergence effect of spher-
ical harmonics, but instead by the numerical issues re-
lated to the evaluation of Q1,1, j

np (r,ψ0) (cf. Section 4.1.1).
This conclusion will be confirmed in Section 4.2.5.
• V z,In (requires Q1,0, j

np (r,ψ0)): Using pmax = 15 and N =

15,113, we achieved a 2 µGal RMS agreement, which is
our best result for this quantity. When further increasing
the two parameters, especially pmax, the accuracy can
slightly be improved over some regions, but the spheri-
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Fig. 7 Dimensionless degree variances of the topographic height func-
tion and its first 30 integer powers. The almost horizontal tails of the
curves indicate parts of the spectra that were not recovered accurately
via spherical harmonic analysis and synthesis in double precision

cal harmonic series starts to produce invalid results over
other parts of the Earth’s surface. This effect is well vis-
ible over the Himalayas (Fig. 9), where increasing pmax
results in decreased accuracy with artificial fan-like struc-
tures covering large portions of the Earth’s surface, sim-
ilarly as in the studies by Hirt et al (2016), Hirt and
Kuhn (2017) and Rexer (2017). The same feature, but of
a smaller magnitude, can also be seen over Kiribati when
pmax = 30. In that case, an area from which the fan-line
structure appears to emerge is seen around the latitude
−1◦ and the longitude −168◦. The enlarged discrepan-
cies are clearly reflected also in Fig. 8 when pmax = 30.
At first, the RMS error decreases with N growing up to
10,795 as could be expected, but then the agreement
exacerbates from 7.2 µGal up to 11.1 µGal for N =

19,431, following by a slight improvement of 10.5 µGal
for N = 21,590. Even more obvious impact of the diver-
gence effect can be seen in terms of the MAX criterion
(cf. Table S1 of ESM), where a sudden degradation starts
already with pmax = 15 and N = 15,113. Supported by
these observations as well as by the studies of Hirt et al
(2016), Hirt and Kuhn (2017) and Rexer (2017), this be-
haviour is here concluded to be caused by the divergence
effect of spherical harmonics. The numerical issues as-
sociated with the evaluation of truncation coefficients
from Section 4.1.1 are here rejected as the main cause
of these discrepancies. This is justified by experiments
that will be presented in Section 4.2.5, where RMS and
MAX are shown to drop by 1 and 3 orders of magnitude,
respectively, when evaluating V z,In on a Brillouin sphere,
on which the series converges by definition. Neverthe-
less, even on the Earth’s surface expanded up to degree
2159, a 2 µGal near-global RMS value was achieved that

could be considered as satisfactory for current applica-
tions.
• V xx,In, V yy,In (both require Q2,0, j

np (r,ψ0) and Q2,2, j
np (r,ψ0)):

For both V xx,In and V yy,In, we observe RMS errors slightly
below 1 E. As already indicated by Fig. 3, increased
discrepancies can be expected for large pmax values (cf.
Fig. 3). Here, these numerical issues produced RMS er-
rors at the order of ∼1018 E for pmax = 30. As will be
shown with the V zz,In element, the errors associated with
the Q2,0, j

np (r,ψ0) coefficients are negligible in this case
and the bulk of the discrepancies is due to the inaccura-
cies related to the Q2,2, j

np (r,ψ0) coefficients.
• V xy,In (requires Q2,2, j

np (r,ψ0)): Similarly as in the previ-
ous case, sub-E RMS errors were achieved, of which the
best one is 0.2 E for pmax = 10 and N = 8636. Again,
the pmax parameter should be chosen carefully, as highly
inaccurate results may be obtained (RMS errors at the
order of 1018 E) when pmax = 20 and 30.
• V xz,In, V yz,In (both require Q2,1, j

np (r,ψ0)): The best RMS
agreement with the reference values, 0.079 E and 0.069 E,
respectively, was achieved with pmax = 10 and N = 10,795.
Similarly as with the other horizontal derivatives of the
gravitational potential that involve differentiation of Q j

np(r,ψ0)

with respect to ψ , spurious artefacts start to be clearly
detectable as soon as pmax is high enough (here beyond
pmax = 10).

• V zz,In (requires Q2,0, j
np (r,ψ0)): For this quantity, we achieved

1.07 E RMS error with pmax = 10 and N = 6477. As
no differentiation of Q j

np(r,ψ0) with respect to ψ is in-
volved, we do not observe deterioration with increasing
pmax and/or N. Similarly as with V z,In, the divergence
effect starts to dominate over the signal when pmax = 30
and N is larger than, say, 15,113.

4.2.4 Far-zone gravity effects: validation 1 m above the
topography

Here, the experiment from the previous section is repeated,
but this time we evaluate far-zone gravity effects. The dis-
crepancies are shown in Figs. S13 – S16 of ESM and the
statistics are reported in Table S2 (ESM). Briefly, similar ac-
curacy was achieved as with the near-zone effects (RMS of
0.03 m s−2 for the potential, 0.8 – 20 µGal for the elements
of the gravitational vector and 0.1 – 3 mE for the elements
of the gravitational tensor). In all cases except for V , V x and
V y, the statistics are more favourable, in some cases almost
by three orders of magnitude (e.g., V zz). The decreased ac-
curacy in V , V x and V y by about one order of magnitude
could be explained by the fact that far-zone masses generate
in this case signal of larger magnitudes than the near-zone
masses (cf. Table 1) which then causes an overall lower ac-
curacy in the absolute sense. However, the relative accuracy
remains comparable with the near-zone effects. Also, note
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Fig. 8 RMS of discrepancies between the cap-modified spectral technique and the spatial-domain Newtonian integration in terms of near-zone
gravity effects evaluated 1 m above the Earth’s topography as a function of the maximum degree N = 2159,4318, . . . ,21590 with varying pmax
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truncation coefficients (cf. Section 4.1.1). Detailed statistics are reported in Table S1 of ESM
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Fig. 9 Near-zone effect differences V z,In between cap-modified spectral gravity forward modelling and reference values over the Himalayas (left
column) and Kiribati (right column). While the pmax value varies from 15 to 30 in the cap-modified spectral technique, the maximum degree N is
fixed to 21,590 (cf. Eq. 24). The computation points are placed 1 m above the topography. Statistics based on the near-global discrepancies can be
found in Table S1 of ESM. Unit in mGal
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that the far-zone effects are here evaluated only over com-
plex areas of the Himalayas and Kiribati which, as we ex-
pect, may worsen the RMS value when compared with the
near-global evaluation from the previous section, which in-
cluded also flat areas of the Earth’s surface.

As for the convergence rate, no significant improvement
is observed after pmax = 5 and N = 2159 (cf. Table S2 of
ESM), both of which are the lowest values that we study
here. Spherical harmonic series therefore converge signif-
icantly faster for far-zone effects than for near-zone ones,
provided that the integration radius is large enough (here
ψ0 ≈ 0.9◦). This is within the expectations because of the
attenuation of short-scale signals with distance. As a result,
far-zone effects from the cap-modified spectral technique
may require to employ only a first few powers of the to-
pography and the maximum degree may not need to be ex-
tended beyond the resolution of the input topography (or at
least substantially less than with the near-zone effects). This
greatly simplifies the computations and appears to be an
analogy to spatial-domain gravity forward modelling, where
coarser grid resolutions are used to improve the computa-
tional speed when evaluating far-zone effects.

In Fig. 10, we show the discrepancies for V z,Out as an
example. Importantly, despite the high values of pmax and
N (30 and 21,590, respectively), no divergence effect is vis-
ible as compared to the near-zone effects (the bottom row
of Fig. 9), and a sub-µGal accuracy was achieved (cf. Ta-
ble S2 of ESM). As an explanation, near-zone effects con-
tain more signal power in high harmonics (cf. Fig. 6) which,
in turn, may readily cause the divergence effect when evalu-
ating the series on the topography and pmax and N are high
enough. Opposed to this, the signal power of far-zone ef-
fects is strongest in low and medium harmonics and rather
negligible in high-degree harmonics as already discussed.

Similarly as in the Bucha et al (2019a) study, we ob-
serve a longitudinal stripe pattern both in Figs. 9 and 10.
For now, we still do not have a satisfactory explanation, but
we expect that this is most likely caused by numerical in-
accuracies associated with the cap-modified spectral tech-
nique. These may include the computation of i) the H̄nmp
coefficients (cf. Section 4.2.2), ii) the truncation coefficients
(Section 4.1.1) or iii) the spherical harmonic synthesis. Nev-
ertheless, the achieved accuracy still seems to be sufficiently
high for many current practical applications.

Finally, when pmax≥ 15, the results for quantities with at
least one horizontal derivative start to deteriorate, indicating
that it is difficult to reach a high accuracy in this case. Again,
this is caused by the numerical issues related to Q1,1, j

np (r,ψ0),
Q2,1, j

np (r,ψ0) and Q2,2, j
np (r,ψ0) (cf. Section 4.1).

4.2.5 Near-zone gravity effects: validation on a Brillouin
sphere

Here, we provide the results of the same experiment as in
Section 4.2.3 but with the evaluation points placed on a Bril-
louin sphere having a constant radius of RB = 6,378.137 km+

7 km (the maximum elevation from the RET2014 model
is ∼6.7 km for nmax = 2159). This radius ensures that all
evaluation points are located in a space, where the series in
Eqs. (6) – (23) converge uniformly and absolutely by def-
inition. Therefore, we assume that if the large discrepan-
cies present in Section 4.2.3 diminish, then they stem from
the divergence effect. Otherwise, if the large errors persist,
specifically for any of the quantities that involve at least one
horizontal derivative, they are assign to the known numeri-
cal issues discussed in Section 4.1.1.

Briefly, it is seen from Fig. 11 that the convergence is
now significantly faster than in Fig. 8 and the discrepan-
cies dropped for many of the quantities (cf. Table S3 and
Figs. S11 and S12 of ESM). Taking V z,In with pmax = 30
and N = 21,590 as an example, the RMS and MAX values
decreased from 0.011 mGal and 5.0 mGal to 0.001 mGal
and 0.005 mGal, respectively. An improvement is seen also
for V In and V zz,In. This supports our conclusion that the in-
creased discrepancies observed in Fig. 9 are indeed caused
by the divergence effect.

In case of V x,In, V y,In, V xx,In, V xy,In, V xz,In, V yy,In and
V yz,In, the enlarged discrepancies remain present when pmax≥
15 which shows that these quantities should be computed ei-
ther with lower values of pmax and N (but still allowing for
a high overall accuracy, cf. Section 4.2.3)—or with an ex-
tended number of significant digits in the synthesis.

Not shown here, but the evaluation of far-zone effects
on a Brillouin sphere is in agreement with the conclusions
drawn in this section.

4.2.6 Concluding remarks on the validation

First, it is obvious that our experiments with truncated spher-
ical harmonic series (Eqs. 6 – 23) cannot in principle reveal
whether the original infinite series converge or diverge. This
is because what we actually deal with in practice is in fact a
finite series of real numbers, which necessarily converges to
a real number. When we speak about the divergence effect,
we refer to a series behaviour yielding for a certain max-
imum degree N1 a worse approximation of the true value
than for some N2 < N1. Note that this, however, differs from
the definition of divergent infinite series. As a consequence,
even a series suffering from the divergence effect may in-
deed converge to the true value when extended up to infinity
(for instance, this appears to be the case of the Taylor se-
ries in Figs. 5 and 9 of Balmino et al 2012 and Bucha et al
2019b, respectively). Nevertheless, for some applications in
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Fig. 10 Far-zone effect differences V z,Out between cap-modified spectral gravity forward modelling and reference values over the Himalayas (left
column) and Kiribati (right column). In both cases, the pmax = 30 and N = 21,590 were used in the synthesis (cf. Eq. 24). The computation points
are placed 1 m above the topography. Statistics of the discrepancies can be found in Table S2 of ESM. Unit in mGal

physical geodesy, the divergence effect is not a desired be-
haviour and should be identified if present. In case of, for
instance, RTM study, it could lead to grossly invalid results
with respect to the observed terrestrial gravity. If the series in
Eqs. (6) – (23) are divergent when extended up to infinity but
are able to represent the true value with a [...] high degree
of accuracy [...] (Gradshteyn and Ryzhik, 2007) after a suit-
able truncation, then they can be considered as asymptotic
(e.g., Sjöberg, 1977; Moritz, 2003; Gradshteyn and Ryzhik,
2007; Sjöberg and Bagherbandi, 2017).

Second, our validation is performed at a 5 arc-min equian-
gular grid, while the gravity signals, here expanded up to de-
gree 21,590, possess spatial information down to the∼30 arc-
sec resolution. Our experiments are thus not able to examine
whether the divergence effect is present, roughly speaking,
inside the cells of the 5 arc-min grid.

Third, our experiments are not capable of revealing the
divergence effect at magnitudes close to, say, the µGal-level
for gravity if present. This is because the∼µGal accuracy of
the two techniques is not sufficient to draw such conclusions
reliably.

Finally, our experiments were restricted to studying the
divergence effect for gravity field expanded up to degree
21,590. As a consequence, they cannot be used to extrapo-
late the series behaviour beyond that degree. These conclu-
sions are therefore valid only for the degree-2159 RET2014
topography with the near- and far-zone gravity effects (ψ0 ≈
0.90◦) modelled up to degree 21,590. However, it seems to
be reasonable to extend this conclusion from one particular
degree-2159 model, here RET2014, to all topographic mod-
els expanded up to the same maximum degree. This is be-
cause they all share similar spectral properties, and therefore
similar behaviour of the divergence effect can be expected.

Importantly, this generalization is proposed exclusively for
the Earth’s topographic models and not generally also for
other bodies like, for instance, the Earth’s Moon. This re-
flects the fact that a different planetary surface may produce
a substantially different behaviour of the divergence effect
(cf. Hirt et al, 2016; Hirt and Kuhn, 2017; Rexer, 2017).

As a general conclusion, based on the tests from Sec-
tions 4.2.3, 4.2.4 and 4.2.5, we are confident in saying that
the enlarged discrepancies in V z and V zz from Section 4.2.3
are caused by the divergence effect of spherical harmon-
ics, while in case of V x, V y, V xx, V xy, V xz, V yy, V yz and
pmax ≥ 20, they originate from numerical issues associated
with ultra-high degree cap-modified spectral modelling. Nev-
ertheless, using appropriate values for pmax and N, accuracy
that appears to be sufficient for many practical applications
was achieved in this study over the entire Earth’s surface
in both cases (∼0.1m2 s−2 for the gravitational potential,
∼µGal for the gravitational vector and ∼E for the gravita-
tional tensor elements).

5 Conclusions

This paper extends cap-modified spectral gravity forward
modelling from the ability of delivering gravitational po-
tential and its radial derivatives (presented by Bucha et al,
2019a) to the full gravitational vector and tensor in the local
north-oriented reference frame. In addition, equations for all
radial derivatives of the horizontal components are provided.

Using advanced forward modelling methods, algorithms
and computational resources, the new technique has been
successfully validated in a numerical experiment for all 10
gravity field quantities against an independent and divergence-
free spatial-domain forward modelling. The gravitating body,
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Fig. 11 RMS of discrepancies between the cap-modified spectral technique and the spatial-domain Newtonian integration in terms of near-zone
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the Earth’s degree-2159 topography, was forward modelled,
yielding its implied gravity field up to degree 21,590. One
of the most challenging steps was the accurate calculation of
truncation coefficients up to ultra-high degrees (here 21,600),
high integer powers of the topography (30) and high-order
radial derivatives of the truncation coefficients (40). To this
end, we had to extend the number of significant digits from
16 in double precision to 256 digits. This rather huge num-
ber of digits ensured numerical evaluation of the coefficients
with 24-digit or better accuracy. Despite this fairly sufficient
number of common digits in terms of double precision, we
have found out that the loss of significance may occur for
rather advanced but realistic conditions. To avoid these is-
sues, one can lower the maximum topography power pmax
and maximum harmonic degree N for the most problematic
coefficients Q1,1, j

np , Q2,1, j
np , Q2,2, j

np and still obtain acceptable
accuracy. Using this strategy, we obtained RMS errors at
the level of 0.005 m2 s−2 (gravitational potential), 4 µGal
(gravitational vector) and 0.07 – 1 E (gravitational tensor)
for near-zone effects, and similar accuracy was achieved for
the far-zone effects (0.03 m2 s−2, 0.8 – 20 µGal, 0.1 – 3 mE,
respectively). In the former case, we used i) pmax = 10 (in
some cases 15) topography powers, ii) the maximum degree
of N =∼10,795 and iii) kmax = 40 radial derivatives for the
continuation in the gradient approach. In the latter case, a
higher convergence rate was observed and thus significantly
lower values of pmax and N were sufficient while keeping a
comparable accuracy (10 and 2159, respectively; kmax might
also be lowered, but this was not studied). Together with
other indirect validations discussed in the manuscript, these
results demonstrate the correctness of the newly derived equa-
tions. It needs to be stressed, however, that avoiding the nu-
merical issues by lowering pmax and N may not be an ac-
ceptable strategy for more complex topographies than that
in our study (nmax > 2159).

The demanding character of our numerical experiments
was drawn by the intention to study the convergence/divergence
behaviour of both global and cap-modified spectral gravity
forward modelling on the topography. We have shown that a
severe divergence effect can be observed when the spher-
ical harmonic series are evaluated on the Earth’s surface,
a region in which the series may no longer converge. We
have also demonstrated that the issue becomes more serious
when improving the completeness of the modelled gravity
field, that is, when increasing the pmax and N parameters.
Including findings from other recent studies (e.g., Garmier
and Barriot, 2001; Takahashi and Scheeres, 2014; Hu and
Jekeli, 2015; Hirt et al, 2016; Reimond and Baur, 2016; Se-
bera et al, 2016; Hirt and Kuhn, 2017; Rexer, 2017; Bucha
et al, 2019b; Chen et al, 2019), the divergence issue of spher-
ical harmonic series on planetary surfaces may soon become
a more urgent issue than perhaps expected before. To be
more specific, this study has shown that the divergence ef-

fect comes into play at least around degree 10,795 in terms
of RMS errors (see also the degree variances in Fig. 3.14
of Rexer 2017). We expect that the divergence effect may
be detectable at even lower degrees if pmax > 30. Therefore,
as we believe, various spherical harmonic representations of
the true potential in the vicinity of the field-generating body
(e.g., Sacerdote and Sansò, 2010; Sansò and Sideris, 2013;
Bucha et al, 2019b) should further be examined to enable re-
liable spherical harmonic gravity field modelling close to the
Earth’s surface. In the space external to the smallest sphere
enclosing all gravitating masses, spherical harmonic series
are, however, convergent as known from potential theory
(e.g., Hotine, 1969).

As an outlook on further developments in cap-modified
spectral modelling, the probably most urgent issue is the ac-
curate and efficient evaluation of Molodensky’s truncation
coefficients for high values of n, p and k. As shown in this
paper, more than 200 significant digits can easily be lost
when targeting at high values for n, p and k. In terms of the
computational speed, it took about one week to compute the
near- and far-zone coefficients using a PC with Intel R©CoreTMi7-
6800K CPU, 128 GB of RAM and a 250 GB SSD drive (our
code is not parallelized because its most time-consuming
parts involve recurrence relations). Because of this, we de-
cided to release the final sets of truncation coefficients that
were used in this study (cf. Data availability after this sec-
tion), making it possible for others to reuse them and thus
avoid the somewhat cumbersome computations with 256 sig-
nificant digits. The next issue, which will become relevant
for a further development of spectral gravity forward mod-
elling techniques, was illustrated in Fig. 7. The figure im-
plies that high powers of the topographic height function
may be difficult to accurately evaluate, because they cover a
wide range of magnitudes which may be problematic when
standard algorithms for harmonic analysis and synthesis are
used in double precision. This was not recognized in pre-
vious works on global and cap-modified spectral forward
modelling. Next, the observed loss of significance indicate
that our strategy may need to be modified if one intends to
extend the modelling beyond the levels of resolution and
completeness of the modelling reached in this paper. Besides
these computational and numerical challenges, a study on
the relation between the divergence effect and the integra-
tion radius could be beneficial. It might reveal, for instance,
an integration radius (possibly multiple radii depending on
the location) for which the series for far-zone effects start to
suffer from the divergence effect on a detectable level in a
closed-loop environment.
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from BB (∼400 GB). The evaluated truncation coefficients Q j

np, Q1,0, j
np ,
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A Derivation of the first-order potential derivatives in
LNOF for cap-modified spectral gravity forward
modelling

In this appendix, cap-modified spectral gravity forward mod-
elling is presented for the first-order potential derivatives in
LNOF, including the horizontal ones. For the sake of brevity,
the derivation is shown only for the near-zone gravitational
effects (inside-cap integration). For the far-zone effects (outside-
cap integration), we provide only the final formulae, because
the derivation can easily be reproduced, simply by chang-
ing the integration domain. Our derivation is based on the
idea by Molodensky et al (1962) and follows the manner by,
for instance, Heiskanen and Moritz (1967) and Šprlák et al
(2015).

The starting point is the expression for the topographic
potential induced by topographic masses that have a con-
stant mass density ρ and are located inside a spherical cap
centred at the evaluation point (Bucha et al, 2019a),

V In(r,ϕ,λ ) = Gρ R2
∞

∑
p=1

ψ0∫
ψ=0

2π∫
α=0

H p(ψ,α)Kp(r,ψ)

× sinψ dα dψ ,

(28)

where ψ and α are the spherical distance and azimuth, re-
spectively, ψ0 ∈ [0,π] is the spherical distance defining the
spherical cap and H p(ψ,α) is the pth integer power of the
topographic height function (cf. Eq. 4). For r > R, the in-
tegral kernels Kp(r,ψ) can be express either via a spectral

relation

Kp(r,ψ) =
∞

∑
n=0

(
R
r

)n+1
p

∏
r=1

(n+4− r)

p!(n+3)
Pn,0(cosψ) , (29)

where Pn,0 is the un-normalized Legendre function of de-
gree n, or through closed spatial formulae

K1(r,ψ) =
R

l(r,ψ)
,

K2(r,ψ) =
1
2

(
K1(r,ψ)− r

∂K1(r,ψ)

∂ r

)
,

Kp(r,ψ) =
1
p!

p−2

∑
s=1

aps rp−s ∂ p−sK1(r,ψ)

∂ rp−s , p≥ 3 ,

(30)

with the Euclidean distance

l(r,ψ) =
√

r2−2Rr cosψ +R2 (31)

and the coefficients

aps = (−1)p−1 (p−1)!(p−3)!
(p− s)!(p− s−2)!(s−1)!

. (32)

Spatial and spectral relations for the radial derivatives of
Kp(r,ψ), p≥ 1, are provided in Appendix A.4 (Eqs. 67 and
70, respectively).

Throughout all the derivations in Appendices A and B,
we assume that

r > max(R+ Ĥ(ϕ,λ )) , (33)

ensuring that the order of summation and integration can be
interchanged whenever necessary. Then, the resulting infi-
nite spherical harmonic series for the topographic potential
and its derivatives are absolutely and uniformly convergent.
Otherwise, the series may converge or diverge.

Next, we formally extend the cap integration from Eq. (28)
to the whole sphere. This can be achieved with discontinu-
ous integral kernels

KIn
p (r,ψ) =

{
Kp(r,ψ) for 0≤ ψ ≤ ψ0 ,

0 for ψ0 < ψ ≤ π ,
(34)

and leads to

V In(r,ϕ,λ ) = Gρ R2
∞

∑
p=1

π∫
ψ=0

2π∫
α=0

H p(ψ,α)KIn
p (r,ψ)

× sinψ dα dψ .

(35)

Note that the gravitational potential in Eq. (35) still remains
to be implied only by the inside-cap masses despite the global
integration (cf. the zero case for KIn

p (r,ψ) in Eq. 34).
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To obtain the sought first-order derivatives of V In(r,ϕ,λ )
in LNOF, we introduce the following differential operators
(e.g., Heiskanen and Moritz, 1967),

Dx =
1
r

∂

∂ϕ
=−cosα D1,1 ,

Dy = − 1
r cosϕ

∂

∂λ
= sinα D1,1 ,

Dz = D1,0 ,

(36)

where we utilized the relations (ibid.)

∂

∂ϕ
=−cosα

∂

∂ψ
,

1
cosϕ

∂

∂λ
=−sinα

∂

∂ψ
,

(37)

and introduced the substitutions

D1,0 =
∂

∂ r
,

D1,1 =
1
r

∂

∂ψ
=−1

r
sinψ

∂

∂ cosψ
.

(38)

In Eq. (38), the first superscript next to D , here being equal
to 1, implies that the differential operator is related to the
first-order derivatives of the gravitational potential. The sec-
ond superscript denotes the order of the differentiation with
respect to ψ (here either 0 or 1). Importantly, the two ex-
pressions for D1,1 are equal when considering that D1,1 will
only be applied to isotropic kernels Kp(r,ψ) (cf. Eqs. 29 and
30), each of which can generally be expressed by a conver-
gent series

K (r,ψ) =
∞

∑
n=0

(
R
r

)n+1

kn Pn,0(cosψ) , r > R . (39)

After applying the differential operators from Eq. (36)
to the gravitational potential from Eq. (35), the first-order
derivatives of V In in LNOF are obtained as

V v,In(r,ϕ,λ ) = Gρ R2
∞

∑
p=1

π∫
ψ=0

2π∫
α=0

H p(ψ,α)Kv,In
p (r,ψ)

× sinψ dα dψ , v = {x,y,z} ,
(40)

where the integral kernels

Kv,In
p (r,ψ) = DvKIn

p (r,ψ) , v = {x,y,z} , (41)

read

Kx,In
p (r,ψ) = − cosα K1,1,In

p (r,ψ) ,

Ky,In
p (r,ψ) = sinα K1,1,In

p (r,ψ) ,

Kz,In
p (r,ψ) = K1,0,In

p (r,ψ) ,

(42)

with

K1,i,In
p (r,ψ) = D1,iKIn

p (r,ψ) , i = 0,1 . (43)

Eq. (42) reveals that the three integral kernels Kv,In
p (r,ψ),

v = {x,y,z}, from Eq. (40) can be expressed in terms of two
kernels only, K1,i,In

p (r,ψ), i = 0,1. As a result, only two sets
of Molodensky’s truncation coefficients are now needed to
compute the three elements of the gravitational vector (see
also Šprlák et al, 2015).

Next, the kernels K1,i,In
p (r,ψ) are expanded in series of

un-normalized Legendre functions of the first kind (e.g., de Witte,
1967; Šprlák et al, 2015),

K1,i,In
p (r,ψ)=

∞

∑
n=i

2n+1
2

Q1,i,In
np (r,ψ0)Pn,i(cosψ) , i= 0,1 .

(44)

The coefficients Q1,i,In
np (r,ψ0) are called Molodensky’s trun-

cation coefficients and are defined as (ibid.)

Q1,i,In
np (r,ψ0) =

(n− i)!
(n+ i)!

π∫
0

K1,i,In
p (r,ψ)Pn,i(cosψ) sinψ dψ

=
(n− i)!
(n+ i)!

ψ0∫
0

D1,iKp(r,ψ)Pn,i(cosψ) sinψ dψ ,

(45)

where i = 0,1. Formulae suitable for practical evaluation of
these coefficients are discussed in Appendices A.1 and A.2.

Substituting Eq. (44) into Eq. (42), with the help of Eq. (40)
and the relations (e.g., Hagiwara, 1972; Eshagh, 2009; Šprlák
et al, 2015)

H(p)
n (ϕ,λ ) =

2n+1
4π

π∫
ψ=0

2π∫
λ=0

H p(ψ,α)Pn,0(cosψ)

× sinψ dα dψ ,

(46)

∂H(p)
n (ϕ,λ )

∂ϕ
=

2n+1
4π

π∫
ψ=0

2π∫
λ=0

H p(ψ,α)Pn,1(cosψ) cosα

× sinψ dα dψ

(47)

and

1
cosϕ

∂H(p)
n (ϕ,λ )

∂λ
=

2n+1
4π

π∫
ψ=0

2π∫
λ=0

H p(ψ,α)Pn,1(cosψ)

× sinα sinψ dα dψ ,

(48)
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we get

V x,In(r,ϕ,λ ) = −2π Gρ R2
∞

∑
p=1

∞

∑
n=1

Q1,1,In
np (r,ψ0)

× ∂H(p)
n (ϕ,λ )

∂ϕ
,

(49)

V y,In(r,ϕ,λ ) =
2π Gρ R2

cosϕ

∞

∑
p=1

∞

∑
n=1

Q1,1,In
np (r,ψ0)

× ∂H(p)
n (ϕ,λ )

∂λ
,

(50)

V z,In(r,ϕ,λ ) = 2π Gρ R2
∞

∑
p=1

∞

∑
n=0

Q1,0,In
np (r,ψ0)

×H(p)
n (ϕ,λ ) .

(51)

The sought Eqs. (9) – (11) for j = ‘In’ are obtained from
Eqs. (49) – (51) when truncating the series over p at some
finite pmax, then considering that

H(p)
n =

n

∑
m=−n

H̄nmp Ynm(ϕ,λ ) (52)

and, finally, utilizing (cf. Lemma 4.1 of Freeden and Schnei-
der, 1998)

H(p)
n (ϕ,λ ) = 0 for n > p×nmax . (53)

As discussed before, the far-zone effects ( j = ‘Out’) can
be derived by changing the integration domain to ψ ∈ [ψ0,π].
Also, we note that H(p)

n (ϕ,λ ) stands for the nth-degree Laplace’s
surface spherical harmonic function of the pth power of the
topographic height function H. It must not be confused with
the pth power of the nth-degree Laplace’s surface spher-
ical harmonic function. The same applies to the notation
H p

n (ϕ,λ ) of Bucha et al (2019a), though they omitted the
brackets in the superscript.

For future reference, we also provide the formulae for
Molodensky’s truncation coefficients related to far-zone ef-
fects,

Q1,i,Out
np (r,ψ0) =

(n− i)!
(n+ i)!

π∫
0

K1,i,Out
p (r,ψ)Pn,i(cosψ)

× sinψ dψ

=
(n− i)!
(n+ i)!

π∫
ψ0

D1,iKp(r,ψ)Pn,i(cosψ)

× sinψ dψ , i = 0,1 ,

(54)

where we introduced the kernels

K1,i,Out
p (r,ψ) = D1,iKOut

p (r,ψ) , i = 0,1 , (55)

with

KOut
p (r,ψ) =

{
0 for 0≤ ψ < ψ0 ,

Kp(r,ψ) for ψ0 ≤ ψ ≤ π .
(56)

A.1 Spectral representation of truncation coefficients for
the first-order potential derivatives in LNOF

The spectral relations for the inner-zone truncation coeffi-
cients Q1,0,In

np (r,ψ0) and Q1,1,In
np (r,ψ0) can be obtained from

Eq. (45) and with the help of Eqs. (29) and (38). For Q1,0,In
np (r,ψ0),

we have (n≥ 0)

Q1,0,In
np (r,ψ0) = −

1
R

∞

∑
l=0

(l +1)
(

R
r

)l+2
p

∏
r=1

(l +4− r)

p!(l +3)

×
ψ0∫
0

Pl,0(cosψ)Pn,0(cosψ) sinψ dψ ,

(57)

and the coefficients Q1,1,In
np (r,ψ0) read (n≥ 1)

Q1,1,In
np (r,ψ0) = −

1
n(n+1)

1
R

∞

∑
l=1

(
R
r

)l+2
p

∏
r=1

(l +4− r)

p!(l +3)

×
ψ0∫
0

Pl,1(cosψ)Pn,1(cosψ) sinψ dψ .

(58)

Note that the integral in Eq. (57) can be evaluated analyti-
cally using recurrence relations (e.g., Paul, 1973; Moreaux
et al, 1999). The integral in Eq. (58) with un-normalized
Legendre functions can be computed analytically similarly
as shown, for instance, in Pail et al (2001) or Hwang (1991)
for fully normalized Legendre functions.

For the sake of brevity, the formulae for the far-zone
truncation coefficients Q1,0,Out

np (r,ψ0) and Q1,1,Out
np (r,ψ0) are

omitted here, but can be derived from Eq. (54). This yields
formally similar relations as in Eqs. (57) and (58) but with
the integration domain ψ ∈ [ψ0,π].

A.2 Closed forms of truncation coefficients for the
first-order potential derivatives in LNOF

After generalizing Eqs. (45) and (54) to a single expres-
sion via the superscript j = {‘In’, ‘Out’} and considering
Eq. (38), the closed form for truncation coefficients with
i = 0 immediately reads

Q1,0, j
np (r,ψ0) =

∂

∂ r

π∫
0

K j
p(r,ψ)Pn,0(cosψ) sinψ dψ

=
∂

∂ r
Q j

np(r,ψ0) , n≥ 0 .

(59)

The newly introduced coefficients Q j
np(r,ψ0) are defined in

Eqs. (28) and (32) of Bucha et al (2019a), wherein spectral
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and recurrence relations can be found for an arbitrary n, p
and order of the radial derivative.

For i = 1 in Eqs. (45) and (54), we have

Q1,1, j
np (r,ψ0) =

1
r

(
c j sinψ0 Pn,1(cosψ0)

n(n+1)
Kp(r,ψ0)

−Q j
np(r,ψ0)

)
, n≥ 1 ,

(60)

with

c j =

{
1 for j = ‘In’ ,
−1 for j = ‘Out’ .

(61)

Eq. (60) was obtained from Eqs. (45) and (54) using integra-
tion by parts and the relation (e.g., Hagiwara, 1972)

d
dψ

(sinψ Pn,1(cosψ)) = n(n+1)Pn,0(cosψ) sinψ . (62)

Note that it must hold in Eq. (62) that ψ ∈ [0,π], a condition
which is fulfilled in our case (cf. Eqs. 45, 54).

A.3 Spectral relations for an arbitrary radial derivative of
truncation coefficients related to the first-order potential
derivatives in LNOF

Differentiation of Eqs. (57) and (58) with respect to r di-
rectly leads to spectral relations for the kth radial derivative,
k ≥ 1, of Q1,0,In

np (r,ψ0) and Q1,1,In
np (r,ψ0),

∂ kQ1,0,In
np (r,ψ0)

∂ rk = (−1)k+1 1
Rk+1

∞

∑
l=0

k+1

∏
e=1

(l + e)

×
(

R
r

)l+k+2
p

∏
r=1

(l +4− r)

p!(l +3)

×
ψ0∫
0

Pl,0(cosψ)Pn,0(cosψ) sinψ dψ ,

(63)

∂ kQ1,1,In
np (r,ψ0)

∂ rk = (−1)k+1 1
n(n+1)

1
Rk+1

∞

∑
l=1

k+1

∏
e=2

(l + e)

×
(

R
r

)l+k+2
p

∏
r=1

(l +4− r)

p!(l +3)

×
ψ0∫
0

Pl,1(cosψ)Pn,1(cosψ) sinψ dψ ,

(64)

where the former relation holds for n ≥ 0 and latter one for
n≥ 1.

The spectral relations for the kth radial derivative of
Q1,0,Out

np (r,ψ0) and Q1,1,Out
np (r,ψ0) are formally similar to

Eqs. (63) and (64) but with the integration domain ψ ∈ [ψ0,π].

A.4 Closed forms for an arbitrary radial derivative of
truncation coefficients related to the first-order potential
derivatives in LNOF

Closed forms of the kth radial derivative of the truncation
coefficients Q1,0, j

np (r,ψ0) and Q1,1, j
np (r,ψ0) can be obtained by

differentiating, respectively, Eqs. (59) and (60) with respect
to r. This leads to

∂ k

∂ rk Q1,0, j
np (r,ψ0) =

∂ k+1

∂ rk+1 Q j
np(r,ψ0) , n≥ 0 , k ≥ 0 , (65)

and

∂ k

∂ rk Q1,1, j
np (r,ψ0) =

k

∑
q=0

(
k
q

)(
(−1)k−q (k−q)!

1
rk−q+1

)
×
(

c j sinψ0 Pn,1(cosψ0)

n(n+1)
∂ q

∂ rq Kp(r,ψ0)

− ∂ q

∂ rq Q j
np(r,ψ0)

)
, n≥ 1 , k ≥ 0.

(66)

In Eq. (66), we employed the general Leibniz rule that
provides a formula for an nth derivative of a product of two
n-times differentiable functions. Similarly as in Appendix A.2,
the derivatives ∂ q(Q j

np(r,ψ0))/∂ rq can be computed for all
q ≥ 0 using the relations from Bucha et al (2019a). The
last missing expressions are those for the radial derivatives
of Kp(r,ψ0). The closed spatial relations for the kth radial
derivative, k ≥ 0, can be obtained from Eq. (30),

∂ k

∂ rk K1(r,ψ) = R
∂ k

∂ rk

(
1

l(r,ψ)

)
,

∂ k

∂ rk K2(r,ψ) =
1
2

(
− (k−1)

∂ k

∂ rk K1(r,ψ)

− r
∂ k+1

∂ rk+1 K1(r,ψ)

)
,

∂ k

∂ rk Kp(r,ψ) =
1
p!

p−2

∑
s=1

aps

k

∑
q=0

(
k
q

)
R(k−q)

p−s (r)

× ∂ p−s+q

∂ rp−s+q K1(r,ψ) , p≥ 3 ,

(67)
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where (Martinec, 1998)

∂ k

∂ rk

(
1

l(r,ψ)

)
=



1
l(r,ψ)

, k = 0 ,

k

∑
(k+ t) is even

t = 0

(−1)
k+t

2

× (k− t +1)!!(k+ t−1)!!
(k− t +1)!

k!
t!

× (r−R cosψ)t

lk+t+1(r,ψ)
, k ≥ 1 ,

(68)

and

R(q)
w (r)=

dq

drq rw =


rw , q = 0 , w≥ 1 ,

q

∏
j=1

(w− j+1)rw−q , q≥ 1 , w≥ 1.

(69)

The spectral relations for ∂ k (Kp(r,ψ0))/∂ rk were derived
by differentiating Eq. (29) with respect to r,

∂ kKp(r,ψ)

∂ rk =
(−1)k

Rk

∞

∑
n=0

k

∏
l=1

(n+ l)
(

R
r

)n+k+1

×

p
∏

r=1
(n+4− r)

p!(n+3)
Pn,0(cosψ) , k ≥ 1 .

(70)

B Derivation of the second-order potential derivatives
in LNOF for cap-modified spectral gravity forward
modelling

In this appendix, we derive Eqs. (13) – (23) to compute the
second-order derivatives of the topographic gravitational po-
tential in LNOF. The derivation closely follows the ideas of
Appendix A as well as that of Šprlák et al (2015). Therefore,
they are limited to the most important steps for the sake of
brevity.

First, we rewrite the differential operators from Eqs. (10)
and (11) of Šprlák et al (2015) in terms of spherical polar
coordinates (r,ψ,α),

Dxx = − 1
2
D2,0 + cos2α D2,2 ,

Dxy = − sin2α D2,2 ,

Dxz = cosα D2,1 ,

Dyy = − 1
2
D2,0− cos2αD2,2 ,

Dyz = − sinα D2,1 ,

Dzz = D2,0 ,

(71)

where

D2,0 =
∂ 2

∂ r2 ,

D2,1 =
∂ 2

∂ r ∂ψ

(
−1

r
·
)
=−sinψ

∂ 2

∂ r ∂ cosψ

(
−1

r
·
)
,

D2,2 =
1

2r2

(
∂ 2

∂ψ2 − cotψ
∂

∂ψ

)
=

1
2r2 sin2

ψ
∂ 2

∂ (cosψ)2 .

(72)

The notation
(
− 1

r ·
)

stands for the multiplication of the term
− 1

r and the integral kernels. Again, it is presupposed that
the differential operators from Eqs. (71) and (72) will only
be applied to isotropic kernels having the form of Eq. (39).
After applying the differential operators from Eq. (71) to
Eq. (35), we get

V uv,In(r,ϕ,λ ) = Gρ R2
∞

∑
p=1

π∫
ψ=0

2π∫
α=0

H p(ψ,α)Kuv,In
p (r,ψ)

× sinψ dα dψ , u,v = {x,y,z} ,
(73)

where we introduced integral kernels

Kuv,In
p (r,ψ) = DuvKIn

p (r,ψ) , u,v = {x,y,z} , (74)

which have the form

Kxx,In
p = − 1

2
K2,0,In

p (r,ψ)+ cos2α K2,2,In
p (r,ψ) ,

Kxy,In
p = − sin2α K2,2,In

p (r,ψ) ,

Kxz,In
p = cosα K2,1,In

p (r,ψ) ,

Kyy,In
p = − 1

2
K2,0,In

p (r,ψ)− cos2α K2,2,In
p (r,ψ) ,

Kyz,In
p = − sinα K2,1,In

p (r,ψ) ,

Kzz,In
p = K2,0,In

p (r,ψ) ,

(75)

with

K2,i,In
p (r,ψ) = D2,iKIn

p (r,ψ) , i = 0,1,2 . (76)

Next, the kernels from Eq. (76) are expanded in series of
un-normalized Legendre functions as

K2,i,In
p (r,ψ) =

∞

∑
n=i

2n+1
2

Q2,i,In
np (r,ψ0)Pn,i(cosψ) (77)

with i = 0,1,2 and Molodensky’s truncation coefficients
Q2,i,In

np (r,ψ0) defined as

Q2,i,In
np (r,ψ0) =

(n− i)!
(n+ i)!

π∫
0

K2,i,In
p (r,ψ)Pn,i(cosψ) sinψ dψ

=
(n− i)!
(n+ i)!

ψ0∫
0

D2,iKp(r,ψ)Pn,i(cosψ) sinψ dψ .



Cap integration in spectral gravity forward modelling up to the full gravity tensor 25

(78)

Numerical evaluation of these coefficients via spectral and
closed spatial relations is discussed in Appendices B.1 and
B.2, respectively.

With the help of Eqs. (78), (77), (76), (75) and (73) of
this paper as well as using Eqs. (47) and (48) of Šprlák et al
(2015), we arrive at the expressions

V xx,In(r,ϕ,λ ) = 2π Gρ R2

×
∞

∑
p=1

∞

∑
n=0

[
− 1

2
Q2,0,In

np (r,ψ0)H(p)
n (ϕ,λ )

+Q2,2,In
np (r,ψ0)

(
n(n+1)H(p)

n (ϕ,λ )

+2
∂ 2H(p)

n (ϕ,λ )

∂ϕ2

)]
,

(79)

V xy,In(r,ϕ,λ ) = − 2π Gρ R2

cosϕ

∞

∑
p=1

∞

∑
n=0

Q2,2,In
np (r,ψ0)

×2

(
tanϕ

∂H(p)
n (ϕ,λ )

∂λ
+

∂ 2H(p)
n (ϕ,λ )

∂λ ∂ϕ

)
,

(80)

V xz,In(r,ϕ,λ ) = 2π Gρ R2
∞

∑
p=1

∞

∑
n=0

Q2,1,In
np (r,ψ0)

× ∂H(p)
n (ϕ,λ )

∂ϕ
,

(81)

V yy,In(r,ϕ,λ ) = 2π Gρ R2

×
∞

∑
p=1

∞

∑
n=0

[
− 1

2
Q2,0,In

np (r,ψ0)H(p)
n (ϕ,λ )

−Q2,2,In
np (r,ψ0)

(
n(n+1)H(p)

n (ϕ,λ )

+2
∂ 2H(p)

n (ϕ,λ )

∂ϕ2

)]
,

(82)

V yz,In(r,ϕ,λ ) = − 2π Gρ R2

cosϕ

∞

∑
p=1

∞

∑
n=0

Q2,1,In
np (r,ψ0)

× ∂H(p)
n (ϕ,λ )

∂λ
,

(83)

V zz,In(r,ϕ,λ ) = 2π Gρ R2
∞

∑
p=1

∞

∑
n=0

Q2,0,In
np (r,ψ0)

×H(p)
n (ϕ,λ ) .

(84)

Note that the non-existing coefficients Q2,1,In
0p (r,ψ0),

Q2,2,In
0p (r,ψ0), and Q2,2,In

1p (r,ψ0) are set to zero in Eqs. (79) –
(84).

Finally, after truncating the series over p at some fi-
nite pmax and considering Eqs. (52) and (53), we obtain
Eqs. (13) – (23) for j = ‘In’.

The relations for j = ‘Out’ can similarly be derived by
changing the integration domain to ψ ∈ [ψ0,π] which re-
quires to introduce the truncation coefficients

Q2,i,Out
np (r,ψ0) =

(n− i)!
(n+ i)!

π∫
0

K2,i,Out
p (r,ψ)Pn,i(cosψ)

× sinψ dψ

=
(n− i)!
(n+ i)!

π∫
ψ0

D2,iKp(r,ψ)Pn,i(cosψ)

× sinψ dψ , i = 0,1,2,

(85)

with

K2,i,Out
p (r,ψ) = D2,iKOut

p (r,ψ) , i = 0,1,2 . (86)

B.1 Spectral representation of truncation coefficients for
the second-order potential derivatives in LNOF

The inner-zone truncation coefficients expressed in the spec-
tral form read

Q2,0,In
np (r,ψ0) =

1
R2

∞

∑
l=0

(l +1)(l +2)
(

R
r

)l+3
p

∏
r=1

(l +4− r)

p!(l +3)

×
ψ0∫
0

Pl,0(cosψ)Pn,0(cosψ) sinψ dψ ,

(87)

Q2,1,In
np (r,ψ0) = −

1
(n+1)n

1
R2

∞

∑
l=1

(l +2)
(

R
r

)l+3

×

p
∏

r=1
(l +4− r)

p!(l +3)

×
ψ0∫
0

Pl,1(cosψ)Pn,1(cosψ) sinψ dψ

(88)
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and

Q2,2,In
np (r,ψ0) =

1
(n+2)(n+1)n(n−1)

1
2R2

×
∞

∑
l=2

(
R
r

)l+3
p

∏
r=1

(l +4− r)

p!(l +3)

×
ψ0∫
0

Pl,2(cosψ)Pn,2(cosψ) sinψ dψ ,

(89)

for n ≥ 0, n ≥ 1 and n ≥ 2, respectively. These equations
were derived from Eq. (78) using Eqs. (29) and (72). The
far-zone coefficients can be derived in a similar manner from
Eq. (85), see also Appendix A.1. Note that the integrals in
Eqs. (87) – (89) can be evaluated analytically (cf. Appendix A.1).

B.2 Closed forms of truncation coefficients for the
second-order potential derivatives in LNOF

Considering Eq. (72), the closed form of truncation coeffi-
cients for the second-order potential derivatives (Eqs. 78 and
85) reads for i = 0 (n≥ 0)

Q2,0, j
np (r,ψ0) =

∂Q1,0, j
np (r,ψ0)

∂ r
=

∂ 2Q j
np(r,ψ0)

∂ r2 . (90)

For i = 1, we have the relation (n≥ 1)

Q2,1, j
np (r,ψ0) =

1
r

[
c j sinψ0 Pn,1(cosψ0)

n(n+1)

×
(

1
r

Kp(r,ψ0)−
∂

∂ r
Kp(r,ψ0)

)
−
(

1
r

Q j
np(r,ψ0)−

∂

∂ r
Q j

np(r,ψ0)

)]
=

1
r

(
Q1,1, j

np (r,ψ0)−
∂

∂ r

(
r Q1,1, j

np (r,ψ0)
))

,

(91)

where we employed integration by parts together with Eq. (62).
Finally, the formula for i = 2 reads (n≥ 2)

Q2,2, j
np (r,ψ0) =

1
2r2

(
c j sinψ0 Pn,2(cosψ0)

(n+2)(n+1)n(n−1)
∂Kp(r,ψ0)

∂ψ

− c j sinψ0 Pn,1(cosψ0)

n(n+1)
Kp(r,ψ0)

+Q j
np(r,ψ0)

)
.

(92)

This equation was derived by applying integration by parts
twice, utilizing Eq. (62) and the recurrence relation (e.g.,

Freeden and Schreiner, 2009)

sin2
ψ

dPn,m(cosψ)

dcosψ
−mcosψ Pn,m(cosψ)

=−(n+m)(n−m+1)sinψ Pn,m−1(cosψ) .

(93)

Again, we acknowledge that ψ must be from the interval
[0,π] in this equation which is satisfied in our case.

B.3 Spectral relations for an arbitrary radial derivative of
truncation coefficients related to the second-order potential
derivatives in LNOF

The spectral form of the kth radial derivative of the inner-
zone truncation coefficients related to the second-order po-
tential derivatives can be obtained by differentiating k times
(k ≥ 1) Eqs. (87) – (89) with respect to r and read

∂ kQ2,0,In
np (r,ψ0)

∂ rk = (−1)k 1
Rk+2

∞

∑
l=0

k+2

∏
e=1

(l + e)
(

R
r

)l+k+3

×

p
∏

r=1
(l +4− r)

p!(l +3)

×
ψ0∫
0

Pl,0(cosψ)Pn,0(cosψ) sinψ dψ ,

(94)

∂ kQ2,1,In
np (r,ψ0)

∂ rk = (−1)k+1 1
(n+1)n

1
Rk+2

∞

∑
l=1

k+2

∏
e=2

(l + e)

×
(

R
r

)l+k+3
p

∏
r=1

(l +4− r)

p!(l +3)

×
ψ0∫
0

Pl,1(cosψ)Pn,1(cosψ) sinψ dψ

(95)

and

∂ kQ2,2,In
np (r,ψ0)

∂ rk = (−1)k 1
(n+2)(n+1)n(n−1)

1
2Rk+2

×
∞

∑
l=2

k+2

∏
e=3

(l + e)
(

R
r

)l+k+3

×

p
∏

r=1
(l +4− r)

p!(l +3)

×
ψ0∫
0

Pl,2(cosψ)Pn,2(cosψ) sinψ dψ
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(96)

for n≥ 0, n≥ 1 and n≥ 2, respectively.
Formally similar equations hold also for the far-zone co-

efficients, but with the integration domain being ψ ∈ [ψ0,π].

B.4 Closed forms for an arbitrary radial derivative of
truncation coefficients related to the second-order potential
derivatives in LNOF

The closed form of the kth radial derivative of the truncation
coefficients Q2,0, j

np (r,ψ0) from Eq. (90) reads

∂ k

∂ rk Q2,0, j
np (r,ψ0) =

∂ k+2Q j
np(r,ψ0)

∂ rk+2 , n≥ 0 , k ≥ 0 , (97)

where the spectral and recurrence relations for Q j
np(r,ψ0)

and its derivatives can be found in Bucha et al (2019a).
Applying the general Leibniz rule, we get for Q2,1, j

np (r,ψ0)

from Eq. (91) the relation

∂ k

∂ rk Q2,1, j
np (r,ψ0) =

k

∑
q=0

(
k
q

)(
(−1)k−q (k−q)!

1
rk−q+1

)
×
(

∂ q

∂ rq Q1,1, j
np (r,ψ0)

− c j sinψ0 Pn,1(cosψ0)

n(n+1)
∂ q+1

∂ rq+1 Kp(r,ψ0)

+
∂ q+1

∂ rq+1 Q j
np(r,ψ0)

)
, n≥ 1 , k ≥ 0 .

(98)

Finally, differentiating Eq. (92) leads to

∂ k

∂ rk Q2,2, j
np (r,ψ0) =

1
2

k

∑
q=0

(
k
q

)
×
(
(−1)k−q (k−q+1)!

1
rk−q+2

)
×
(

c j sinψ0 Pn,2(cosψ0)

(n+2)(n+1)n(n−1)

×
∂ q+1Kp(r,ψ0)

∂ rq ∂ψ
− c j sinψ0 Pn,1(cosψ0)

n(n+1)

×
∂ qKp(r,ψ0)

∂ rq +
∂ q

∂ rq Q j
np(r,ψ0)

)
(99)

for all n≥ 2 and k ≥ 0.
The derivatives of Kp(r,ψ0) with respect to r and ψ from

Eq. (99) can be obtained by differentiating Eqs. (67) and

(70) with respect to ψ . For k≥ 0, the closed spatial relations
read

∂ k+1

∂ rk ∂ψ
K1(r,ψ) = R

∂ k+1

∂ rk ∂ψ

(
1

l(r,ψ)

)
,

∂ k+1

∂ rk ∂ψ
K2(r,ψ) =

1
2

(
− (k−1)

∂ k+1

∂ rk ∂ψ
K1(r,ψ)

− r
∂ k+2

∂ rk+1 ∂ψ
K1(r,ψ)

)
,

∂ k+1

∂ rk ∂ψ
Kp(r,ψ) =

1
p!

p−2

∑
s=1

aps

k

∑
q=0

(
k
q

)
R(k−q)

p−s (r)

× ∂ p−s+q+1

∂ rp−s+q ∂ψ
K1(r,ψ) , p≥ 3 ,

(100)

with

∂ k+1

∂ rk ∂ψ

(
1

l(r,ψ)

)
=

∂ k+1

∂ψ ∂ rk

(
1

l(r,ψ)

)

=



− r R sinψ

l3(r,ψ)
, k = 0 ,

k

∑
(k+ t) is even

t = 0

(−1)
k+t

2

× (k− t +1)!!(k+ t−1)!!
(k− t +1)!

k!
t!

×
[
(r−R cosψ)t−1 Rsinψ

lk+t+1(r,ψ)

×
(

t− (r−Rcosψ)r
k+ t +1
l2(r,ψ)

)]
, k ≥ 1 .

(101)

Eq. (101) was derived from Eq. (68). Finally, the spectral
counterpart of Eq. (100) was derived from Eqs. (29) and
(70), and read

∂Kp(r,ψ)

∂ψ
=−

∞

∑
n=1

(
R
r

)n+1
p

∏
r=1

(n+4− r)

p!(n+3)
Pn,1(cosψ)

(102)

for k = 0 and

∂ k+1Kp(r,ψ)

∂ rk ∂ψ
=

(−1)k+1

Rk

∞

∑
n=1

k

∏
e=1

(n+ e)
(

R
r

)n+k+1

×

p
∏

r=1
(n+4− r)

p!(n+3)
Pn,1(cosψ)

(103)

for k ≥ 1.
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C Indirect check on the numerical accuracy of
evaluated truncation coefficients

The numerical accuracy of evaluated truncation coefficients
QIn

np(r,ψ0) and QOut
np (r,ψ0) (cf. Eq. 6) can be checked indi-

rectly through the identity (Bucha et al, 2019a)

QIn
np(r,ψ0)+QOut

np (r,ψ0) = Snp(r) . (104)

Translated into gravity effects, when adding near- and far-
zone gravity effects (equivalent to the left-hand side of the
equation), the result must be identical to the global gravity
effect (the right-hand side of the equation) from global spec-
tral modelling (cf. Section 2 of this paper and also Section 3
of Bucha et al 2019a).

For the kth radial derivative, k ≥ 1, we have

∂ kQIn
np(r,ψ0)

∂ rk +
∂ kQOut

np (r,ψ0)

∂ rk =
∂ kSnp(r)

∂ rk , (105)

where

∂ kSnp(r)
∂ rk =

(−1)k

Rk
2

2n+1

p
∏
i=1

(n+4− i)

p!(n+3)

×
k

∏
e=1

(n+ e)
(

R
r

)n+k+1

, k ≥ 1 ,

(106)

and the relations for the radial derivatives of QIn
np(r,ψ0) and

QOut
np (r,ψ0) were discussed in Bucha et al (2019a). Eq. (105)

can also be used to check the numerical accuracy of Q1,0, j
np (r,ψ0)

and Q2,0, j
np (r,ψ0) (see Eqs. 59 and 90, respectively).

For the newly derived coefficients Q1,1, j
np (r,ψ0), Q2,1, j

np (r,ψ0),
Q2,2, j

np (r,ψ0) and their radial derivatives, the following rela-
tions can be derived from Eqs. (58), (88), (89), (64), (95) and
(96) when exploiting the orthogonality of Legendre func-
tions,

∂ kQ1,1,In
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(107)
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(108)

∂ kQ2,2,In
np (r,ψ0)

∂ rk +
∂ kQ2,2,Out

np (r,ψ0)

∂ rk

=
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1
2R2

2
2n+1

(
R
r

)n+3
p

∏
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R
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)n+k+3

×

p
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(n+4− r)

p!(n+3)
, k ≥ 1 .

(109)

In Eqs. (107), (108) and (109), it must be satisfied that n≥ 1,
n≥ 1 and n≥ 2, respectively (cf. Eqs. 64, 95 and 96).

Note that this validation method is indirect only, because
all these equations compare the sums of near- and far-zone
truncation coefficients instead of validating directly the in-
dividual coefficients. However, as mentioned by Bucha et al
(2019a), a direct validation does not seem to be possible at
the present time, given that no relations for the truncation
coefficients are known to the authors beside those in Bucha
et al (2019a) and this paper.
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